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1. Introduction  

Acquired immunodeficiency syndrome (AIDS) caused 

by the human immunodeficiency virus type 1(HIV-1) 

infects many people every day, and millions of people 

have died from this disease [1, 2]. According to the joint 

united nation program on HIV/AIDS (UNAIDS), about 

22 million people died from AIDS, and over 39 million 

people lived with HIV/AIDS at the end of 2008[3]. The 

essential step in the life cycle of HIV-1 is the reversed 

transcription of the viral RNA genome to produce a 

double-strand DNA copy, so this process is referred to as 

reverse transcriptase [4]. Reverse transcriptase (RT) is the 

prime target for the development of drugs for the 
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HIV/AIDS therapy [5]. RT inhibitors can be divided into 

two major categories: nucleoside reverse transcriptase 

inhibitors (NRTIs) and non-nucleoside reverse 

transcriptase inhibitors (NNRTIs)[5, 6]. NR.TIs cause 

DNA chain termination when they are incorporated into 

a growing DNA strand.6 NNRTIs directly block the RT 

enzyme by binding to a pocket adjacent to the catalytic 

site of the enzyme.5 In this study, NNRTIs gained the 

greatest importance because of their specificity and low 

toxicity [7].Although the therapeutic efficiency of 

NNRTIs is severely limited by the emergence of HIV-1 

drug-resistance, their use in combination therapy has 

been encouraging and has revived interest in the search 
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Abstra c t  

Quantitative structure-activity relationship (QSAR) models were constructed in order to predict the anti-

HIV activity of a set of phenethyl thiazole thiourea (PETT) analogs by calculated descriptors. Molecular 

descriptors calculated by Dragon software were subjected to variable reduction using the stepwise 

regression. The variables were then used as inputs for QSAR model generation using multiple linear 

regression (MLR) and artificial neural network (ANN). Validation study of the MLR and ANN models was 

performed using the test set and leave-one-out techniques. The results obtained for prediction of the test set 

by the MLR and ANN models showed squared correlation coefficients of 0.766 and 0.913, respectively. 
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for new, selective, and potent NNRTIs. Therefore, in the 

past 15 years, more than 50 structurally diverse NNRTIs 

have been described [8]. 

Computational methods, namely QSAR, have been 

developed as effective approaches in facilitating new 

drug discovery. By using these methods, the biological 

activity of chosen molecules can be estimated before the 

experimental test. Consequently, they are simple and 

cheap, and accelerate to design molecules with the 

desired biological activity [9]. 

The main steps in QSAR studies can be summarized 

as structure entry and optimization, descriptor 

calculations, descriptor selections, model construction, 

and validation of the proposed model [10, 11]. QSAR 

model can be formulated based on experimentally derived 

descriptors or theoretically calculated descriptors.1 The 

latter group of descriptors can be determined solely by 

computational methods, and no laboratory measurements 

are needed. Thus this saves time, material, space, and 

equipment, and it is available for any molecule, real or 

hypothetic [12]. 

There are several major techniques that can be applied 

for QSAR modeling such as multiple linear regression 

(MLR) and partial least square (PLS) for inspection of the 

linear relationship between biological activity and 

molecular descriptor [13, 14, 15] and artificial neural 

network (ANN) and support vector machine (SVM) to 

analyze non-linear relationship between the activity of 

interest and molecular descriptor [16-19]. In the present 

contribution, we attempted to establish structure-activity 

for a set of PETT analogs by means of the ANN and MLR 

methods. To the best of our knowledge, this is the first 

report on modeling of these derivatives by the ANN and 

MLR methods. 

2. Theory 

Artificial neural networks (ANNs) are computational 

simulations of biological neural networks [20] that learn 

through experience with appropriate learning exemplar 

by detecting the patterns and relationships in data, not 

from pre-programming [21]. The fundamental 

component of a neural network is neuron. Neurons are 

essentially computation units that consist of weighted 

input, transfer function, and one output [11, 21]. These 

processing elements can be one of the three different 

kinds. Neurons in the input layer receive their values from 

independent variables. In turn, the hidden neuron collects 

values from the precedent neuron, giving a result that 

passes to a successor neuron. Finally, neuron in the output 

layer takes values from other units, and corresponds to 

different dependent variables [22]. There are different 

types of network architecture but the most common ANN 

architecture that is useful for QSAR studies and drug 

research is multiple-layer feed forward with back 

propagation learning rule. In this method, a set of input 

values are propagated in forward direction through the net 

such that an output is calculated for each node based on 

the current weight. For a given set of data, the calculated 

error is the difference between ANN output value and the 

experimental output [23]. These errors are then used as 

inputs to feedback connection from which adjustments 

are made to the synaptic weight layer by the layer in 

backward direction[6 ].The goal of training (weight 

adjustment of) the network is to minimize the output 

error. There are many back propagation training 

algorithms with different computational, storage 

requirement, and different speed available [17]. In this 

study, we used the Bayesian-regularization training 

algorithm due to the ability of this algorithm in solving 

some of the main weaknesses of back propagation ANNs. 

This is faster than the standard back propagation neural 

networks. In addition, in this method, the concerns about 

over fitting and overtraining are eliminated so that the 

definitive and reproducible model is attained [3].  

Overfitting problem or poor generalization capability 

happens when a neural network overlearns during the 

training period. In such situation, the error on the training 

set is small, while for a new set of data, which is presented 

to the network, the error is large. In other word, the 

network has memorized the training examples but it has 

not learned to generalize the new situation [24]. The 

Bayesian regularization approach modifies the objective 

function (Eq. 1) by adding a term, MSW, which is the 

mean of the sum of squares of the network weights: 
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In these equations, 
ˆ

iy
 is the network output for 

compound i, iy
 is the target value for compound i, N is 

the number of compounds, and α and β are the parameters 

which are to be optimized in the Bayesian framework of 

Mackey [25]. Using this performance function causes the 

network to have smaller weights and bias, and this forces 

the network to be smoother and less likely to overfit 

weights. BR takes place within the Levenberg-Marquardt 

algorithm performed in Matlab environment. BR ANN 

has been successfully used in QSAR studies [26-28]. 

3. Methods and calculations  

3.1. Data set 

The data sets for IC50 activity of 49 PETT analogs were 

chosen from the reference[28] Concentration of the 

compound required to achieve 50% protection of MT-cell 

from HIV-1 induced cytopatothogency (IC50) was 

converted to pIC50 ([-log (IC50 
610

)]) and then used as 

the dependent variable in the subsequent QSAR studies. 

Basic skeleton of these compounds is presented in Figure 

1, and the various substituents along with the 

experimental pIC50 data for the compounds are listed in 

Table 1. 

NH
NH

S

R2R1

 

Figure 1. Basic skeleton of PETT analogs. 

 

3.2. Structure entry and descriptor generations  

The success of QSAR modeling and accuracy of the 

results firstly depends on the exact calculation of the 

values of molecular descriptors. These numerical values 

computed for compounds after a low-energy 

conformation were obtained by standard optimization 

chemical methods (e.g. ab initio, semi-empirical method). 

For this requirement, the 2D structures of the molecules 

were drawn by Hyperchem 7. Software 

(http://www.hyper.com) and geometries were optimized 

using the semi-empirical AM1 method, employing a 

gradient limit of 0.001 kcal-1 as stopping condition for 

optimization process. All calculations were carried out at 

the restricted Hartee-Fack level with no configuration 

interaction. The optimized geometries were transferred to 

the dragon software (http://www.disat.unimib.it/vhml) to 

calculate a total of 1481 descriptors in 18 different classes 

for each compound available in the data set. 

3.3. Descriptor screening 

To select the significant descriptors from pool of 

descriptors, first all descriptors with the same values for 

about 90% of molecules were removed. Then the 

remaining descriptors and experimental data were 

analyzed by the stepwise regression SPSS (version 17) 

(http://www.spss.com). Only 11 descriptors were 

selected as the effective ones. These 11 descriptors and 

the anti-HIV activities were reassembled into a data 

matrix and used in MLR and ANN modeling. Out of these 

selected descriptors, a number of 10 descriptors were 

used as the most feasible ones in the ANN modeling. As 

it can be seen in the correlation matrix (Table 2), there is 

no considerable correlation between the selected 

descriptors. 

3.4. ANN generation   

A fully connected, three layer, feed-forward ANN 

with back propagation error was used in this study, 

whose algorithm was written in MTLAB7.7 (Math 

Work, Inc., Natick, MA, USA) using the corresponding 

toolbox in our laboratory, and was run on a personal 3.2 

GHz computer. The descriptors appearing in MLR were 

used as inputs of the networks, and the signal for the 

output layer demonstrates the anti-HIV activity (pIC50) 

of the compounds under study.  
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Table 1. Structural features and pIC50 activity for PETT analogs. R1 and R2 are defined in Figure 1. 

No.         R1        R2 pIC50 

1a phenyl 2-thiazolyl 6.04 

2b 2-flourophenyl 2-thiazolyl 7.22 

3a 3- flourophenyl 2-thiazolyl 6.82 

4a 4- flourophenyl 2-thiazolyl 6.00 

5a 2-methoxyphenyl 2-thiazolyl 7.40 

6a 3-methoxyphenyl 2-thiazolyl 6.82 

7b 4-methoxyphenyl 2-thiazolyl 6.46 

8a 2-methylphenyl 2-thiazolyl 7.10 

9a 2-azidophenyl 2-thiazolyl 7.52 

10a 2-nitrophenyl 2-thiazolyl 6.82 

11a 2-hydroxyphenyl 2-thiazolyl 5.96 

12b 2-chlorophenyl 2-thiazolyl 6.22 

13a 3-ethoxyphenyl 2-thiazolyl 7.22 

14a 3-propoxyphenyl 2-thiazolyl 6.70 

15a 3-isopropoxyphenyl 2-thiazolyl 6.40 

16a 3-phenoxyphenyl 2-thiazolyl 5.96 

17a 2,6-dimethoxyphenyl 2-thiazolyl 7.05 

18b 2,5-dimethoxyphenyl 2-thiazolyl 6.70 

19a 3-bromo -6-methoxyphenyl 2-thiazolyl 7.52 

20a 2-fluoro -6-methoxyphenyl 2-thiazolyl 8.00 

21a 2-ethoxy -6-flourophenyl 2-thiazolyl 8.00 

22b 2,6-diflourophenyl 2-thiazolyl 8.00 

23a 2-chloro -6-flourophenyl 2-thiazolyl 8.22 

24a 2-pyridyl 2-thiazolyl 6.70 

25a 1-methylpyrrol-2-yl 2-thiazolyl 5.72 

26a 2-furyl 2-thiazolyl 6.19 

27b phenyl 4-methylthiazol-2-yl 7.00 

28a phenyl 4-ethylthiazol-2-yl 6.22 

29a phenyl 4-propylthiazol-2-yl 6.46 

30a phenyl 4-isopropylthiazol-2-yl 6.70 

31a phenyl 4-butylthiazol-2-yl 5.60 

32a phenyl 4-cyanothiazol-2-yl 6.70 

33b phenyl 4-(triflouromethyl)thiazol-2-yl 6.26 

34a phenyl 4-(ethoxycarbonyl)thiazol-2-yl 6.70 

35a phenyl 5-chlorolthiazol-2-yl 5.62 

36b phenyl 1,3,4- thiadiazol-2-yl 5.72 

37a phenyl 2-pyrazinyl 5.41 

38a phenyl 2-pyridyl 7.70 

39a phenyl 5-bromo-2- pyridyl 7.82 

40a phenyl 5-methyl-2- pyridyl 7.52 

41a phenyl 2-benzothiazolyl 6.70 

42b 2,6-difluorophenyl 4-ethylthiazol-2-yl 8.26 

43a 2,6-difluorophenyl 4-cyanothiazol-2-yl 8.22 

44a 2,6-difluorophenyl 5-bromo-2- pyridyl 9.00 

45a 2,6-difluorophenyl 5-methyl-2- pyridyl 8.52 

46a 2-ethoxy-6-fluorophenyl 5-methyl-2- pyridyl 8.35 

47a 2-ethoxy-6-fluorophenyl 5-bromo-2- pyridyl 8.22 

48a 2-pyridyl 5-methyl-2- pyridyl 7.30 

49b 2-pyridyl 5-bromo-2- pyridyl 7.82 

* a training set and b test set; 

Table 2. Correlation matrix for selected descriptors. 

 nPhX BEHp8 DECC RDF105m Mor26p CIC2 R5u_A MATS

5p 

Mor15p Mor28u 

nPhX 1          

BEHp8 -0.036 1         

DECC -0.126 0.633 1        

RDF105m 0.154 0.432 0.432 1       

Mor26p -0.359 -0.301 -0.348 -0.440 1      

CIC2 -0.389 0.556 0.506 0.355 -0.212 1     

R5u_A -0.104 -0.191 -0.495 -0.167 0.149 -0.106 1    

MATS5p -0.067 -0.426 0.022 -0.248 0.040 -0.140 0.003 1   

Mor15p 0.245 0.511 0.047 0.222 -0.161 0.259 -0.006 -0.237 1  

Mor28u 0.328 -0.560 -0.362 -0.272 0.064 -0.652 -0.113 0.402 -0.334 1 
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 4. Results and discussion 
4.1. Optimization of ANN parameters 

For successful training of back propagation ANN 

and selection of the best ANN model, the effective 

parameters in ANN performance such as the number of 

hidden layers, number of neurons in hidden layers, 

number of input variables, type of training function, 

transfer function, number of iteration, and momentum 

values had to be optimized. In the optimization 

procedure, the data set was randomly partitioned in the 

training set and test set including 39 and 10 chemicals, 

respectively. Training set was used for training and 

optimization weights and biases by the leave-one-out 

cross validation technique. In this procedure, one 

compound was removed from the training set. The 

network was trained using the remaining 38 compounds 

and then used for prediction of the removed compounds. 

The process was reiterated for each compound in the 

training set. Minimization mean square error (MSE) of 

the training set was selected as criteria in the 

optimization of parameters. Meanwhile, 10 compounds 

in the test set were not used during the modeling 

process, and were kept for evaluation of the constructed 

ANN model. The architecture and specification of the 

optimized ANN can be observed in Table 3. 

Table 3. Architecture and specification of optimized ANN. 

parameter value 

No. of neurons in input layer 10 

No. of neurons in hiden layer 4 

No. of neurons in output layer 1 

Transfer function in hidden layer tansig 

Transfer function in output layer pureline 

Train function BR 

momentum 0.0485 

No. of iterations (epoch) 18 

4.2. Brief descripton of selected descriptors  

The nPhX parameter is a functional group desccriptor 

which represents the number of halogen atoms bonded to 

carbon atoms in aromatic ring. This descriptor has a 

positive coefficient in the model, which indicates that an 

increase in the number of halogen substituents in 

aromatic ring causes increase in inhibition of the reverse 

transcriptase enzyme (e.g. compound numbers 2-4 to 22, 

44). 

BCUT is a class of molecular descriptors defined as 

eigenvalues of the modified connectivity matrix, which is 

also called the Burden matrix B. These descriptors have 

been demonstrated to reflect relevant aspects of 

molecular structure, and are therefore useful in similarity 

searching and comparison. Among BCUT descriptors, 

BEHp8 (the higest eigenvalue No. 8 of the Burden matrix 

weighted by atomic polarizabilities) has the highest rank. 

It was shown that the highest eigenvalues contain 

contributions from all atoms, and thus reflect the topology 

of the whole molecule[29, 30] The coefficient for the 

BEHp8 descriptor has a positive sign in the model, and 

thus higher values of BEHp8 would be beneficial for 

activity. 

The descriptor DECC [31] belongs to the family of 

topological descriptors, which is defined as average of 

absolute sum of the difference between the eccentricity 

(ηi) and average atom eccentricity (η̅), where ηi is the 

maximum distance from the ith vertex to any other 

vertices, and η̅ is the average sum of ηi. This distance-

based index takes into consideration the distribution of 

the topological distances in the molecular structure, and 

hence reflects the topological shape of the compound, 

describeing the degree of ramification, centricity, and 

cyclicity. 

The 3D-MoRSE descriptors were derived from an 

equation used in electron diffraction studies. Electron 

diffraction does not yield atomic coordinates directly but 

provides diffraction patterns from which the atomic 

coordinates are derived by mathematical transformations 

[11, 32]. Some of the 3D-MoRSE (Mor26p, Mor15p, and 

Mor28u) descriptors appearing in the model are 

important because they take into account the 3D 

arrangement of the atoms without depending on the 

molecular size, and thus are applicable to a large number 

of molecules with great structural variance. 

Radial distribution function (RDF) of an ensemble of 

N atoms can be interpreted as the probability 

distribution of finding an atom in spherical volume of 

certain radius; Eq. 4 represents the RDF code. 
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where f is a scaling factor, N is the number of atoms, Ai 

and Aj are atomic properties of atoms i and j, rij 

represents the interatomic distance, and B is a 

smoothing parameter which defines the probability 

distribution of the individual distances [33]. In the BR-

ANN model, RDF105m takes into account the atoms 

inside virtual spheres 10.5 Å of diameter. These types of 

descriptors invariance against translation and rotation of 

the entire molecule, and provide valuable information 

about interatomic distance in the entire molecule, bond 

distance, and ring type. The coefficient for RDF105m 

has a negative sign in the model, which indicates that a 

lower descriptor value is favorable for the reverese 

transcriptase enzyme inhibition. 

The descriptor CIC2, defined as the complementary 

information content (neighborhood of order 2) and 

obtained on the basis of Shannon information theory, 

takes in to account all atoms in the constitutional formula 

(hydrogen also being included), and is a topological 

descriptor. Complementary information content of a 

system at different levels can be calculated as follows: 

2 2log logi i
k

i

n n
CIC n

n n
 

                (5) 
where ni is the number of atoms in the ith class, and 

n is the total number of atoms in molecule. Division of 

atoms into different classes depends on the coordination 

sphere taken in to account. This leads to the different 

order k. In the two levels, the atom set is decomposed 

into equivalence classes using their chemical nature and 

bonding pattern up to the second-order bonded 

neighbors [34]. This descriptor can express the internal 

flexibility of the molecule. 

Geometry topology and atomic weight assembly 

(GETAWAY) descriptors are based on the information 

contained within the molecular influence matrix. They 

combine the geometrical information in the influence 

matrix and topological information in the molecular 

graph weighted by various atomic properties. 

GETAWAY descriptors contain two sets of molecular 

descriptors, namely H-GETAWAY and R-GETAWAY 

descriptors. The influence/distance matrix, where the 

elements of this matrix are combined with those of the 

geometry matrix, calculates the R-GETAWAY 

descriptors [11, 35]. R5u (R-GETAWAY descriptor) is 

calculated using the leverages between two atoms with 

the topological distances equal to 5, without any 

weighing. These descriptors appear as important 

variables because of the fact that they are highly sensitive 

to the 3D molecular structure, and are used to compare 

molecules or even conformers, taking into account their 

molecular shape, size, and symmetry, and atom 

distribution. The negative sign for this descriptor 

indicates that an increase in R5u leads to decrease in the 

enzyme-inhibitor interaction. 

The 2DAUTO class of descriptors [36] also 

represents the topological structure of the compounds. 

The 2DAUTO descriptor considered in this study has its 

origin in autocorrelation of topological structure of 

Moran (MATS5p). The computation of this descriptor 

involves the summations of different autocorrelation 

functions corresponding to the considered length (lag5). 

At the same time, these descriptors indicate the role of 

polarizability property of the compounds in deciding the 

activity.  

 

4.3. Validation of the proposed ANN model 

The prediction ability of ANN is its ability to give an 

acceptable output for a molecule that is not incorporated 

in the training examples. The prediction ability of the 

constructed BR-ANN model was evaluated by means of 

the test set and leave-one-out procedure. In using the test 

set, the optimized ANN was trained using 39 compounds, 

and then used for prediction of the pIC50 activities for 10 

chemicals that were not used in the training procedure. 

The results illustrated in Table 4 and Figure 2a 

demonstrates reliability of the model. In the leave-one-

out technique, one compound was left out, and the 

network was trained with the remaining 48 compounds in 

the data set and then used for prediction of the activity of 

the discarded compound. The process was repeated until 

each compound in the data set was removed once. The 

results (Table 5) show the suitable prediction of the 
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offered model. Figure 3a shows plot of the ANN 

predicted pIC50 against the experimental values. The 

residual of the ANN predicted values of pIC50 versus the 

experimental values were plotted in Figure 4. The random 

distribution of the residual around the zero line 

demonstrates that no systematic error exists in the 

developed model. 

Table 4. Prediction results for the proposed model using the test 

set. 

No. pIC50 

experimental predicted %E 

ANN MLR ANN MLR 

2 7.22 6.85 6.76 -5.12 -6.37 

7 6.46 6.61 6.86 2.32 6.19 

12 6.22 6.52 6.78 4.82 9.00 

18 6.70 6.78 6.65 1.19 -0.75 

22 8.00 7.75 7.50 -3.12 -6.25 

27 7.00 6.96 6.59 -0.57 -5.86 

33 6.26 6.05 6.08 -3.35 -2.88 

36 5.72 5.57 5.61 -2.62 -1.92 

42 8.26 7.73 7.53 -6.42 -8.84 

49 7.82 7.90 7.97 1.02 1.92 

 

 
Figure 2. Plot of predicted versus experimental pIC50 values for test 

set with (a) ANN model (b) MLR model.  

For the purpose of comparison, Some MLR models with 

different numbers of selected descriptors were 

constructed using training by means of the cross-

validation by the leave-one-out method. Molecules in the 

training set were the same as those in the ANN analysis. 

The best multiple linear regression model was the one that 

had the least number of descriptors and high R2adj. The 

results obtained (Figure 5) showed that the R2adj values 

increased with increase in the number of descriptors up to 

6, and further addition of descriptors into the model did 

not have any considerable effect on R2adj. Therefore, 6 

descriptors were selected as the most feasible ones, which 

had the following linear equation: 

 

Table 5. Prediction results for the proposed model using leave-one-out procedure. 

No.                                                     pIC50 

experimental  predicted %E 

ANN MLR ANN MLR 

1 6.04 5.85 5.99 -3.15 -0.83 

2 7.22 6.85 6.79 -5.12 -5.96 

3 6.82 6.91 6.68 1.32 -2.05 

4 6.00 6.24 6.39 4.00 6.50 

5 7.40 7.21 7.47 -2.57 0.95 

6 6.82 7.09 7.05 3.96 3.37 

7 6.46 6.62 6.84 2.48 5.88 

8 7.10 7.22 7.05 1.69 -0.70 

9 7.52 7.26 7.52 -3.46 0.00 

10 6.82 6.70 6.73 -1.76 -1.32 

11 5.96 6.07 6.42 1.85 7.72 

12 6.22 6.57 6.92 5.63 11.25 

13 7.22 6.86 6.84 -4.99 -5.26 

14 6.70 6.64 6.65 -0.90 -0.75 

15 6.40 6.51 6.35 1.72 -0.78 

16 5.96 6.00 6.23 0.67 4.53 

17 7.05 6.80 7.03 -3.55 -0.28 
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18 6.70 6.98 6.72 4.18 0.30 

19 7.52 7.52 7.89 0.00 4.92 

20 8.00 8.05 7.98 0.63 -0.25 

21 8.00 8.33 8.25 4.13 3.13 

22 8.00 7.94 7.58 -0.75 -5.25 

23 8.22 8.20 8.26 -0.24 0.49 

24 6.70 6.56 6.47 -2.09 -3.43 

25 5.72 5.60 5.89 -2.10 2.97 

26 6.19 6.26 6.03 1.13 -2.58 

27 7.00 7.25 6.58 3.57 -6.00 

28 6.22 6.47 6.60 4.02 6.11 

29 6.46 6.21 6.20 -3.87 -4.02 

30 6.70 6.78 6.92 1.19 3.28 

31 5.60 5.73 6.01 2.32 7.32 

32 6.70 6.77 6. 63 1.04 -1.04 

33 6.26 6.02 6.10 -3.83 -2.56 

34 6.70 6.78 6.53 1.19 -2.54 

35 5.62 5.39 5.31 -4.09 -5.52 

36 5.72 5.36 5.68 -6.29 -0.70 

37 5.41 5.90 6.26 9.06 15.71 

38 7.70 7.16 6.96 -7.01 -9.61 

39 7.82 7.83 7.52 0.13 -3.84 

40 7.52 7.91 7.28 5.19 -3.19 

41 6.70 6.61 6.43 -1.34 -4.03 

42 8.26 7.54 7.60 -8.72 -7.99 

43 8.22 8.66 8.21 5.35 -0.12 

44 9.00 8.55 9.03 -5.00 0.33 

45 8.52 8.78 8.78 3.05 3.05 

46 8.35 8.02 8.43 -3.95 0.96 

47 8.22 8.36 8.45 1.70 2.80 

48 7.30 7.16 6.94 -1.92 -4.93 

49 7.82 7.78 7.99 -0.51 2.17 

 

 

 

Figure 3. Plot of predicted against experimental pIC50 values for all data sets predicted by LOO cross-validated method with 
(a) ANN model (b) MLR model. 

pIC50 = 4.417 + 0.534nPhX + 3.009 BEHp8 - 

2.53DECC - 0.209RDF105m - 3.956 Mor26p - 1.075 

CIC2         (6)  

To investigate the predictive power of the generated 

linear model, the test set and leave one-out technique 

were applied, whose results are demonstrated in Tables 

4 and 5, respectively. Figures (2b) and (3b) show plot of 

the MLR predicted pIC50 against the experimental 

values for test data and LOO, respectively. 

4.4. Y-Randomization or chance correlations 

In order to assess robustness of the ANN model and 

check for the possibility of chance correlations, the Y-

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

5 7 9

p
IC

5
0

/ 
P

re
d

ic
te

d

pIC50 / Experimental

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

5 7 9

p
IC

5
0
 / 

P
re

d
ic

te
d

pIC50 / Experimental

(a) (b) 



Journal of Applied Chemistry    Prediction of the anti-HIV…            Vol. 9, No. 32, 2015  

 

31 

 

randomization test was applied. In this contribution, the 

dependent variable vector (pIC50) was randomly 

scrambled, and a new QSAR model was developed by 

means of the original independent variable matrix 

(descriptors) and random values of dependent variables. 

If the original model has no chance correlation, there is 

a considerable difference in the R2 values of the original 

model and new QSAR model constructed using random 

responses. Several random shuffles of the dependent 

vectors were carried out, and the results were shown in 

Table 6. The small values for R2 demonstrate that well 

results of BR-ANN are not owing to a chance 

correlation or structural dependency of the training set. 

 

Figure 4. Plot of residual against experimental pIC50 values 

for all data sets predicted by LOO cross-validated method 

using ANN model 

 
Figure 5. Variation of R2

adj values as a function of number of 
descriptors 

 

Four statistical parameters were selected to evaluate the 

prediction power of the constructed model. They were 

mean square error (MSE), mean absolute error (MAE), 

squared correlation coefficient (R2), and mean relative 

error (MRE). These parameters are calculated as 

follows: 
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where n is the number of compounds in the training set, 

m is the number of descriptors involved in the model, 

iy
 is the pIC50 experimental value for compound i, 

ŷi is the predicted value for compound i, y̅ is the mean 

of pIC50 experimental values, and N is the number of 

compounds in the chosen set. The values for these 

parameters are given in Table 7. Based on these 

parameters, a comparison between the MLR and ANN 

models confirm that the ANN model has substantially 

better and more accurate prediction with respect to the 

MLR model. 

Table 6. R2test and R2L.O.O values after several y-

randomization tests. 

iteration R2test R2L.O.O 

1 0.0015 0.00654 

2 0.0740 0.0822 

3 0.0098 0. 1356 

4 0.1599 0.0079 

5 0.3606 0.2145 

6 0.1059 0.0456 

7 0.0624 0.3820 

8 0.0034 0.1231 

9 0.0237 0.1678 

10 0.0055 0.0098 

 

Table 7. Statistical parameters. 
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parameter proposed ANN 

model 

MLR model 

   Test 

set 

L.O.O Test 

set 

L.O.O 

MSE 0.0674 0.068 0.171 0.101 

MAE 0.213 0.211 0.355 0.246 

R2 0.913 0.914 0.766 0.870 

MRE 3.057 3.029 4.997 3.659 

 

5. Conclusions  

In this work, multiple linear regression (MLR) 

and artificial neural network (ANN) were employed 

for modeling and predicting the anti-HIV activity of 

PETT analogs. The ANN approach appeared to be a 

better model in contrast with the MLR model. The 

superiority of ANN technique indicates that 

contribution of some of the descriptors to reverse 

transcriptase inhibition may be non-linear. This 

result comes up from the fact that the same 

parameters were applied for generation of the MLR 

model and ANN. 
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