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Palladium nanoparticles (Pd NPs) have been successfully biosynthesized via biogenic
production using starting materials of Palladium (II) chloride (PdClI,) and bio-reductant
Allium jesdianum leaf extract (A.J.L extract) as a green and straightforward technique in
aqueous solution without any external agent. Leaf extracts are a rich source of
phytochemicals such as polyols, polyphenols, sugars, flavonoids, and heterocyclic
components, which function as capping, reducing, and stabilizing agents in the reductive
process of Palladium (11) ions to Pd NPs under in-situ conditions. The as-synthesized
palladium nanostructures were characterized by UV-visible spectroscopy, field emission
scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS),
and transmission electron microscopy (TEM) to confirm and study the morphological
properties of the bio-produced palladium nanoparticles. FESEM and TEM analysis
demonstrated the formation of spherically shaped Pd NPs with a diameter in the range of
10-59 nm. The Mizoroki-Heck cross-coupling reaction was used to investigate the
catalytic activity of biosynthesized palladium nanoparticles. The reactions of various aryl
halides with n-butyl acrylate were conducted under aerobic and solvent-free conditions,
resulting in high yields of the desired products. The nanoparticles were isolated without
requiring a complex or lengthy workup process. Furthermore, the nano-catalyst was easily
recycled via simple filtration and reused successfully for six consecutive runs.
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1. Introduction
A key focus in nanotechnology research is the
synthesis and  characterization of  metal
nanoparticles (MNPs) of various sizes, chemical
compositions, and morphologies.  Recently,
nanomaterials produced using biosynthesis have
attracted considerable attention due to their non-
toxic approaches. In the rapidly developing field of
nanoscience, noble metal nanoparticles are at the
forefront and exhibit unexpected chemical, physical,
and biological properties that differ significantly
from those in the bulk state [1, 2]. These compounds
have widespread applications in various fields
including medicine, sensing, catalysis and
electronics [3-12].

There have been many metallic nanoparticles
prepared with different morphologies. Additionally,
their surface area, size, size distribution, and
dispersion status could be used to tailor their
chemical, physical and mechanical properties. Due
to the unique chemical, physical, thermodynamic,
and optical properties of Pd NPs, their production
has attracted a lot of attention [13, 14]. As a result,
Pd NPs have been widely used in the area of
catalysis [15, 16] and drug delivery [17]. Chemical
reduction of palladium (Il) ions by alcohol [18],
[19], [20]

dimethylamine-borane complex (21) are the most

hydrazine ascorbic  acid and
common ways for synthesis of Pd NPs. Nonetheless,
the majority of these processes were carried out
without any bio-stabilizers to synthesize and stable
Pd NPs. In addition to routine physical and chemical
methods, bio-fabrication of nanoparticles has gained
popularity due to its environment-friendly process,
mild experimental conditions, readily available, and
affordable materials [22-25]. As an alternative
procedure for the synthesis of biocompatible metal
nanoparticles, it can be the use of microorganisms
such as fungi, algae, bacteria, human cells, and

plants as reducing/capping agents. In the last
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decades, eco-friendly methods using live plants or
plant extracts have emerged as a practical, simple
and straightforward alternative to conventional
procedures and have gained much attention [26-30].
Many antioxidants and plant metabolites such as
alkaloids, terpenoids, flavonoids, vitamins, and
phenolic compounds are presented in these
stabilizing/reducing agents [31, 32]. The mentioned
synthetic approach using plant extracts demonstrates
the potential use of biomass for the bio-reduction of
cations to zero-valent metal nanoparticles. It should
be noted that many key parameters including crystal
structure, size, stabilization, and controlled
monodispersity influenced the catalytic activity of
noble metal NPs. Transition metal nano-catalysts
including copper, gold, palladium and their alloys
are utilized extensively in carbon-carbon cross-
coupling reactions and the formation of C-Het (N,
S) bonds using a wide range of substrate, strong
catalytic performance, and increased yields [33, 34].
Palladium nanoparticles are one of the most
important noble metal NPs that is widely utilized as
an effective catalyst for the degradation of organic
contaminants [35], the decolorization of dyes [36],
coupling reactions [16] and other applications.
Nanoscience has played a pivotal role in catalysis,
enhancing the desirable attributes and productivity
of catalytic systems. The improvement in the
efficiency of heterogeneous catalysts has been
facilitated by the fabrication of uniformly sized
nanoparticles. One of the most potent and
extensively researched synthetic transformations is
the formation of C-C bonds, particularly involving
Cross-coupling reactions catalyzed by transition
metals have become important in synthetic
chemistry [37, 38]. Among transition metals, Pd
catalysts have been widely utilized for carbon-
carbon bond formation, including Hiyama, Stille,
Negishi, Suzuki, Heck and Sonogashira reactions,

which the last three coupling being the most
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adaptable and widely used for the formation of
single, double, and triple carbon-carbon bond,
respectively [15, 39]. In this work, the Allium
jesdianum plant was used to make the biomass
extract for the synthesis of Pd NPs. To the best of
our understanding, there aren’t many research
groups that have reported the green synthesis of
nanomaterial using Allium jesdianum [40]. The
chemical composition of this plant has been reported
by Askari [41] including flavonoids and phenolic
compounds as stabilizing/reducing agents. Also, it is
used as an herbal medicine to treat kidney and
hepatic failure, various cancers, and rheumatoid
arthritis [42-44].

2. Materials and Methods

2.1. Chemical and Apparatus

All chemical reagents and solvents used in this
research were purchased from the Merck chemical
company without further purification. Deionized
water (DW) was used to prepare all solutions. Figure
1 shows the Allium jesdianum plant. In the spring
season, the fresh Allium jesdianum green leaves

were harvested from the slope of Dena Mount

(Zagros Mountains).

Fig. 1. The fresh Allium jesdianum green leaves.

2.2. Synthesis of the Allium jesdianum extract
Allium jesdianum fresh leaves (biomass) were
collected and properly washed, then dried in shade
for five days with appropriate air conditioning and
ground to a fine powder. 2.5 g of its powder was
added to 50 mL of deionized water in round-bottom
flasks of 100 ml capacity at 70 °C in the dark for 40
minutes and the mixture color changed to yellowish.

To remove any impurities from the obtained extract,
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it was filtered through Whatman filter paper No. 1
and centrifuged at 6000 rpm for 15 min.

2.3. Synthesis of Pd nanoparticles using the
aqueous leaf extract of the Allium jesdianum

First, PdCl, salt (1.000 mmol) was dissolved by a
few drops of HCI dilute solution with the aid of
sonication. After that, the solution was diluted with
DW to obtain a Pd (Il) concentration as a stock
solution (100 mL, 0.01 M). In the next step, 15 mL
of freshly prepared extract was added dropwise to
well-mixed aqueous PdCl; solution (25 mL, 1 mM)
at 50 °C. The change in the color of the solution from
yellowish to dark brown after 30 minutes indicates
the complete formation of Pd nanoparticles [41, 45].
Moreover, the reaction progress was monitored by
UV-vis spectroscopy at various times. Finally, the
suspension was centrifuged at 5000 rpm for 15 min
which gave rise to a Pd nanoparticle precipitate. The
dark gray solid was washed with distilled water,
dried and then kept under vacuum for 24 h.

2.4. Characterization of Palladium Nanostructures
and the Heck Cross-Coupling Reaction Products
Ultraviolet-visible (UV-vis) spectroscopy analysis
of the extract and the extract residue before and after
bio-reduction respectively were performed on a
HALO DB-20 spectrophotometer on wavelengths
ranging from 200 to 600 nm. All experiments were
examined at room temperature. The morphology of
the sample and chemical analysis of produced
nanoparticles were performed using TESCAN
(MIRA 111) SEM Transmission electron microscope
(TEM) using a LEO 906E microscope operating at
an accelerating voltage of 20 kV was carried out to
identify the size and shape of Pd NPs. After
purification of the Heck cross-coupling reaction
products by Pd NPs catalyst, all NMR (1H and 13C)
spectra of them were recorded on a Bruker (*H at
400.2 and 3C at 100.6 MHz) spectrometer in CDCls
using TMS as the internal standard at 25 °C.
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2.5. Mizoroki—-Heck coupling using biosynthesized
Pd NPs

In a typical heterogeneous catalytic reaction, a
mixture of aryl halide (1.0 mmol), n-butyl acrylate
(1.5 mmol), Tripropylamine (PrsN, 1.5 mmol) and
Pd NPs catalyst 0. 1 g (containing 0.0048 mmol
of Pd) was stirred under solvent-free conditions in
an oil bath at 80 °C in the presence of air. The
progress of the reaction was followed by TLC.
Following the completion of the coupling, the
reaction vessel was cooled down to ambient
temperature, and 10 mL of ethyl acetate was added.
The catalyst was separated by centrifugation and
recovered. Water (3x15 mL) was added to the
organic phase and it separated into two layers in the
decanter. The organic phase was dried using
anhydrous sodium sulphate. In the final step, the
organic solvent was evaporated and the product was
purified by column chromatography on silica gel
After

complete drying, the catalyst was reused for the

using hexane/ethyl acetate as eluents.
same reaction repeatedly for six runs.

3. Results and Discussion

3.1. UV-vis absorbance spectra of A.J.L extract,
pd?* and biosynthesized Pd NPs

One of the basic techniques for characterizing
nanoparticles in aqueous solutions/suspensions is
UV-visible absorption spectroscopy [24]. The UV
spectrum of the A.J.L extract in Fig. 2a reveals a
maximum absorption peak at 253 nm which is

related to phenolic compounds.

— (@) aqueous AJ.L. extract
(h) Pd (nqy)

1.6 e (€) P panoparticles

sorbance

A
a

0.6+

0

T T T T
200 250 300 JI60 400 450 600 GO0
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Fig. 2. The UV spectrum of a) the A.J.L extract, b) PdCl, aqueous
solution, ¢) Pd NPs.
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The intense peak centered at 335 nm is related to
absorption of the ring system and = — n* transitions
on which this absorbent bond demonstrates the
presence of flavonoid compounds [40, 46, 47]. The
bio-reduction of the aqueous Pd (Il) ions to
zerovalent using A.J.L extract was studied based on
the changes in the color of the solution during the
formation of the product until attaining a fixed color
indicating the end of the synthesis of Pd NPs
completely and monitoring by UV-vis spectroscopy
in the region of 200 - 600 nm.

After 12 hours, the color of the solution changed
gradually from brownish yellow to dark brown,
signifying the formation of Pd NPs. The absorption
spectrum of PdCl, aqueous solution before bio-
reduction is shown in figure 2b. The absorption peak
at 430 nm is related to Pd (1) ions. The absorption
spectrum of mixture after bio-reduction by AJ.L
extract is shown in figure 2c. Figures 2b and 2c show
that the disappearance of the absorption peak at 430
nm in the palladium colloidal suspension samples
indicates that the initial Pd (II) ions have been
completely reduced [48, 49]. These data indicate
that the A.J.L extract serves as both a reducing agent
and a stabilizing agent for Pd NPs. Also, the
nanoparticles might be covered by a layer of
phytochemicals, preventing the growth of
nanoparticles and the formation of large particles;
thus, phytochemicals stabilized the nanoparticles in
the medium.

3.2. FESEM of biosynthesized Pd NPs.

FESEM was applied to study the size and surface
morphology of the prepared Pd NPs. Figure 3
displays FESEM image of palladium nanoparticles
acquired under the mentioned optimal conditions.
FESEM analysis demonstrated the formation of
nano-spherically shaped Pd NPs with a diameter in

the range of 9-35 nm.
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Fig. 3. FESEM image of palladium nanoparticles
Figure 4 displays the selected elemental mapping of

the Pd nano-catalyst; it can be clearly seen that the

elements Pd and O are uniformly distributed.

Fig. 4. The selected elemental mapping of Pd NPs
Figure 5 shows the elemental composition of the

Pd NPs, determined using EDS analysis.

" ) .“ - “~

Fig. 5. The EDS analysis of the Pd NPs.

This elemental spectrum shows approximately
strong signals of elemental Pd nanoparticles at about
3 keV and also, peaks of carbon and oxygen
elements belonging extract were detected. The
morphology,

shape, and size of the green-

synthesized Pd nano-catalyst in the colloidal
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solutions were characterized by TEM image of
palladium nanoparticles. Figure 6 shows TEM
image of Pd NPs. According to transmission

electron micrographs, Pd NPs are typically seen in

and have

spherical shapes relatively good

monodispersity.

Fig. 6. TEM image of palladium nanoparticles.

3.3. Catalytic activity

To assess the activity of the nano-catalyst, it is
used in the Heck reaction of iodobenzene which
occurs easily at the temperature ranging from 80 to
140 °C. As a model reaction, the cross-coupling
reaction of iodobenzene with n-butyl acrylate was
utilized to assess the catalytic performance of the
prepared heterogeneous nano-catalyst. To identify
the optimal conditions for the Heck cross-coupling
reaction, several parameters, including the amount
of catalyst, type of base, solvent, and temperature,
of Pd

nanoparticles. The reaction of n-butyl acrylate (1

were investigated in the presence
eq.) with iodobenzene (1 eq.) in the presence of
tripropylamine (2 eq.) at 140 °C delivered a 93%

product yield (Table 1, entry 11).
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Table 1. The effect of various parameters on the reaction of iodobenzene with n-butyl acrylate?

PdNPs

[©)

| o
©/ . \)ko/\/\ NN N
Solvent, Base
Temprature
Entry Base Solvent T/°C Time Isolated Yield (%)°
1 n-PrsN DMF 130 25 min 91 (100)
2 n-PrsN DMSO 130 25 min 90 (100)
3 n-PrsN H.O Reflux 18 h 36 (60)
4 n-PrsN EtOH Reflux 18 h 27 (32)
5 n-PraN THF Reflux 18 h 2 (5)
6 n-PrsN Toluene Reflux 18 h 3(8)
7 n-PrsN None 80 12h 4 (10)
8 n-PrsN None 100 12 h 75 (80)
9 n-PrsN None 120 2h 86 (100)
10 n-PrsN None 130 55 min 91 (100)
11 n-PrsN None 140 7 min 93 (100)
12 NaOH None 140 18 h 70 (77)
13 KOAc None 140 18 h 80 (86)
14 K2CO3 None 140 18 h 84 (89)
15 DABCO None 140 1.5 min 91 (97)

@Reaction conditions: iodobenzene (1 mmol), n-butyl acrylate (1.5 mmol) and base (1.5 mmol) in the presence

of Pd NPs (0. 1 g containing 0.0048 mmol of Pd).

bThe data shown in the parentheses refer to the iodobenzene conversion.

These reaction conditions were selected for
additional experiments. In solvent-free conditions,
we investigated different bases. It was observed that
the used base had an important effect on the reaction,
and the best result was related to tripropylamine
with a shorter reaction time and the highest yield
(Table 1, entry 11). Therefore, in the presence of
tripropylamine, the efficiency of the catalyst in the
reaction of n-butyl acrylate (1 eq.) with other aryl
halides was investigated. As the temperature rose,
the reaction proceeded more efficiently. When the
reaction was performed under solvent-free
conditions at 120-140 °C,

iodobenzene was complete. (Table 1, entries 9-11).

the conversion of

The best results were obtained with iodobenzene
(1.0 mmol) and n-butyl acrylate (1.5 mmol) under
solvent-free conditions at 140 °C, which gave the
high-efficiency products. After that, the efficacy of
halides

including both electron-donating and electron-

the palladium nanoparticles with aryl

withdrawing groups was examined (Table 2).
According to the published research in recent [50],

it has been verified that reactivity order of different
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aryl halides in heck reaction is R-Cl < R-Br < R-I.
As seen in table 2, the aryl lodide (Table 2, entries
1,2,5,6,8and 11) reacted in less time than bromide
ones (Table 2, entries 3, 7,9 and 12) and for the aryl
Bromide (Table 2, entries 3, 7, 9 and 12) reacted in
less time than chloride ones (Table 2, entries 4 and
10). Also, the electron-withdrawing groups such as
-NO; on the aromatic ring increases the reactivity of
the corresponding aryl halide in the Heck reaction
(Table 2, entries 11 and 12), whereas electron-
donating groups such as -Me (Table 2, entries 5- 7)
or -OMe (Table 2, entries 8- 10) have opposite
effect. As indicated in Table 2, it is clear that our
method is logically general and applicable to a
variety of aryl halide types. Additionally, the
product yield of deactivated aryl halides was
unaffected by the steric hindrance of substituents. It
can be claimed that this procedure consistently
provided the desired products with desirable yields.
3.4. Spectral data of some products

Product 2b: 'HNMR (CDCl;, 400.2 MHz): §
(ppm): 1.04 (t, 3 H, J= 7.2 Hz), 1.52 (sex, 2 H, J=
7.6), 1.78 (quint, 2 H, J=6.8), 4.31 (t, 2 H, J= 6.8
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Hz), 6.58 (d, 1 H, J= 15.6 Hz), 7.49-7.62 (m, 3 H),
7.78(d,1H,J=7.2Hz),7.91(t, 2 H, J=6 Hz), 8.23
(d, 1 H, J= 84 Hz), 857 (d, 1 H, J= 15.6 Hz).
3CNMR (CDCls, 100.6 MHz): § (ppm): 13.84,
19.30, 30.87, 64.57, 120.97, 123.42, 125.02, 125.48,
126.24, 126.87, 128.76, 130.49, 131.44, 131.85
133.71, 141.61, 167.02.

Product 2e: tHNMR (CDCl3, 400.2 MHz): § (ppm):
1.00 (t, 3 H, J=7.6 Hz), 1.47 (sex, 2 H, J= 7.2 Hz),
1.72 (quint, 2 H, J=6.4 Hz), 2.39 (s, 3 H), 4.23 (t, 2
H, J= 6.4 Hz), 6.42 (d, 1 H, J=15.6 Hz), 7.21 (d, 2
H,J=8Hz),7.45(d, 2 H, J=8 Hz), 7.69 (d, 1 H, J=
16 Hz). ®CNMR (CDCl;, 100.6 MHz): & (ppm):
13.79, 19.24, 21.47, 30.83, 64.35, 117.20, 128.07,
129.62, 131.77, 140.61, 144.57, 167.31.

Product 2i: tHNMR (CDCls, 400.2 MHz): & (ppm):
0.97 (t, 3H, J=7.2 Hz), 1.45 (sex, 2 H, J=7.6 Hz),
1.69 (quint, 2 H, J= 6.8 Hz), 3.83 (5, 3 H), 4.21 (t, 2
H, J=6.8), 6.32 (d, 1 H, J= 16 Hz), 6.90 (d, 2 H, J=
8.8 Hz),7.48 (d,2H,J=8.8Hz), 7.65(d, 1 H,J=16
Hz). 3CNMR (CDCls, 100.6 MHz): § (ppm): 13.77,
19.23, 30.84, 55.32, 64.24, 114.30, 115.76, 127.2,
129.68, 144.20, 161.34, 167.4.

The 'HNMR spectrum of the product 2a is provided

as a sample in Figure 7.

Fig. 7. tHNMR spectrum of the product 2a (CDCls, 400.2 MHz:
8 (ppm)).

In order to learn the catalytic activity of Pd@ Allium

jesdianum, we compared our results with different
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reported catalysts used in the cross-coupling
reaction of iodobenzene and butyl acrylate. The
results illustrate the high activity of the catalyst
developed in the current work (Table 3).

3.5. Catalyst recyclability

The recyclability of the catalyst is an important issue
in the Heck coupling reaction and was examined
through a series of experiments via a used catalyst
with n-butyl acrylate under optimized reaction
conditions. The reusability of the catalyst was
confirmed using iodobenzene with n-butyl acrylate
as model substrates (Table 1, entry 11) by carrying
out a set of consecutive experiments in which the
used catalyst was filtered, washed with fresh
deionized water, dried at 70 °C and used for the next
reaction. The reaction time of the six successive runs
revealed the good recyclability of the used Pd
catalyst (Table 4). The results showed that after six
trials, there was no appreciable decrease in the
activity of the catalyst. Also, the TEM analysis of
the recovered Pd nanoparticles in Figure 7 revealed
that their size distribution and morphology remained

significantly unchanged compared to the TEM

image of the fresh nano-catalyst.
» 'v.l

Fig. 7. TEM images of palladium nanoparticles.
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Table 2. Mizoroki-Heck reaction of n-butyl acrylate and various aryl halides using the Pd NPs?

o]
X o} N
@ + \)Lo/\/\ 4>Pd i ‘ D o
R// n-Pr3N, 140 °C R//
1 2
Entry Aryl Halide Product ;I'nljrlr:g \E:;;I)d TON/TOF (min™)

|
1 ©/ WOM 7 93 193/27.5
la 2a
| O o
N 30 91 189/6.3
1b
Br
3 ©/ Q/\AO/\/\ 720 63 131/0.18
1c 2¢c
Cl
O/ @/\Ao/\/\ 1080 74 154/0.14
1d 2d
|
Me/©/ le
L

5 MOM 18 91 189/10.5
Me’ 2e
(e}
2 NN
6 0 25 90 187/7.5
Me 1f Me of
Br o
7 Me/© QMO/\/\ 1080 60 125/0.1
1g Me 29
| (o]
8 M /©/ QM o 25 93 193/7.7
eO
1h  Meo 2h
Br o
9 MBOJ@/ Q/VL o> 1320 62 129/0.1
i  Meo 2i
Cl o
10 MEOQ /@M o™~ 1080 50 104/0.1
1j MeO 2j
I o
N
1 o NQ M o 35 90 187/5.3
2 Me
1Kk O,N Me 2k
Br o
NN
12 OZNQ w o7 90 89 185/2
1 oN 2l

8Reaction conditions: 1 (1 mmol), 2 (1.5 mmol), PraN (1.5 mmol), Pd NPs (0. 1 g containing 0.0048
mmol of Pd), solvent free.
bIsolated yields.
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Table 3. Comparison of the prepared catalyst with other catalysts for Heck reactions from iodobenzene with butyl acrylate.

Entry Catalyst Condition Time (min) Yield (%0) Reference
1 Pd@Agarose Solvent-free, 100°C 120 90 [51]
2 Pd/SDPP Solvent-free, 130°C 60 99 [52]
3 Fes0,@CQD@Si@PNIPAM-NH,/Pd DMF, 95°C 60 95 [53]
4 Pd@Chitosan-PAAS DMAc, 110°C 180 95 [54]
5 Pd@NHC@ZIF-8 DMF/H,0, 110°C 45 90 [55]
6 Pd(0)-SMTU-boehmite PEG, 80°C 25 99 [56]
7 FesO,@triazole-Schiff-basePd PEG-400, 120°C 25 98 [57]
8 Pd@Allium jesdianum Solvent-free, 140 °C 7 93 This work

Table 4. Recyclability of nano-catalyst in Mizoroki-Heck cross-
coupling reaction?

Run 1 2 3 4 5 6

7 9 13 17 20 25

aReaction conditions: 140 °C, solvent-free,
iodobenzene (1 mmol), n-butyl acrylate (1.5
mmol), Pr3N (1.5 mmol) and Pd NPs.
®Completion time for the reaction.

Time (min)®

4. Conclusion

In the present work, we reported a rapid, simple, and
economical biosynthesis procedure to synthesize Pd
nanoparticles using a reducing agent of A.J.L.
extract. TEM, SEM, and EDS analysis results
confirmed the successful synthesis of stable Pd
nanoparticles exhibiting a spherical morphology and
a small diameter. Pd NPs synthesized by A.J.L
extract were stable and efficient catalyst in the
Mizoroki—Heck cross-coupling reaction with high
yields and chemoselectivity in acceptable reaction
time. The polyols, polyphenols, flavonoids, sugar,
and heterocyclic components were responsible for
the capping and reduction of Pd (I1) ions and then
the stabilization of palladium nanoparticles.

The reactions are carried out in the open air,
indicating that the Pd nano-catalyst is highly stable
and not oxygen-sensitive. The catalytic system is
applicable to various aryl halides (chloride, bromide

and iodide), and can be easily separated from the
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products and reused without considerable loss of
efficiency.
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