Experimental investigation of ultrasound/ Fenton’s reagent oxidation process on the degradation rate constant of p- nitrophenol

Document Type : Original Article

Authors

Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran

Abstract

The main objective of the present work is the investigation of the efficacy of a combination of Fenton chemistry and high-frequency sonochemistry for wastewater treatment, including p-nitrophenol (PNP) as a model pollutant. These methods have been used to degrade PNP in a batch system under different operating conditions based on ultrasound process, Fenton reaction, ultrasound/hydrogen peroxide, and ultrasound/Fenton process. The reactor consisted of six ultrasonic transducers with a frequency of 1.7 MHz. Three transducers were located in the bottom, and the other three were embedded in the wall of the reactor. The results showed that the PNP decomposition follows a pseudo-first-order reaction. The degradation rate constant was determined for various operating parameters including pH, input electric power to transducers, and concentrations and volumes of H2O2 and FeSO4. In optimum conditions, the highest PNP degradation rate constant was obtained for the combination of 1.7 MHz ultrasound and Fenton reaction (0.166 min-1 ) with a synergistic coefficient of 1.165. Next priorities were related to Fenton, ultrasound/hydrogen peroxide and ultrasound with degradation rate constant of 0.137, 0.0107, and 0.005 min-1, respectively. Therefore, the ultrasound/Fenton process had the highest ability to degrade PNP, because ultrasound could intensify Fenton reaction to produce more hydroxyl radicals.

Keywords

Main Subjects


[1] D. Zhao,C. Ding,C. Wu, X. Xu, Enrgy. Proced. 16 (2012) 146.
[2] M. Sivakumar, P. A. Tatake, A. B. Pandit, Chem. Eng. J. 85 (2002) 327.
[3] M. Khavarpour, G. Najafpour Darzi, S. F. Seyedtabar, S. M. Vahdat, J. Applied Chem. 9 (2015) 11.
[4] M. W. Chang, T.- S. Chen, J.- M. Chern, Ind. Eng. Chem. Res. 47 (22) (2008) 8533.
[5] T. Lesko, A. J. Colussi, M. R. Hoffmann, Environ. Sci. Technol. 40 (21) (2006) 6818.
[6] M. A. Oturan, J. Peiroten, P. Chartrin, A. J. Acher, Environ. Sci. Technol. 34 (16) (2000) 3474.
[7] M. Rahimi, M. Dehbani, M. Abolhasani, Int. Commun. Heat Mass. 39 (2012) 720.
[8] M. Legay, N. Gondrexon, S. Le Person, P. Boldo, A. Bontemps, Int. J. Chem. Eng. (2011), Article ID 670108.
[9] M. Abolhasani, A. Karami, M. Rahimi, Numer. Heat Tr. A-Appl. 67 (2015) 1282.
[10] M. Abolhasani, M. Rahimi, M. Dehbani, A.A. Alsairafi, Numer. Heat Tr. A-Appl. 62 (2012) 822.
[11] A. A. Pradhan, P. R. Gogate, J. Hazard. Mater. 173 (2010) 517.
[12] Z. Guo, Z. Zheng, S. Zheng, W. Hu, R. Feng, Ultrason. Sonochem. 12 (2005) 461.
[13] S. H. Lin, C. C. Lo, Water Res. 31 (1997) 2050.
[14] Y. W. Kang, K. Y. Hwang, Water Res. 34 (2000) 2786.
[15] E. Neyens, J. Baeyens, J. Hazard. Mater. 98 (2003) 33.
[16] E. Chamarro, A. Marco, S. Esplugas, Water Res. 35 (2001) 1047.
[17] E. M. Siedlecka, P. Stepnowski, Pol. J. Environ. Stud. 14 (6) (2005.) 823.
[18] M. S. Yalfani, S. Contreras, F. Medina, J. Sueiras, Appl. Catal. B: Environ. 89 (2009) 519.
[19] C. Jiang, S. Pang, F. Ouyang, J. Ma, J. Jiang, J. Hazard. Mater. 174 (2010) 813.
[20] C. S. D. Rodrigues, R. A. C. Borges, V. N. Lima, L. M. Madeira, J. Environ. Manage. 206 (2018) 774.
[21] K. Shang, W. Li, X. Wang, N. Lu, N. Jiang, J. Li, Y. Wu, Sep. Purifi. Technol. 218 (2019) 106.
[22] D. Ghime, P. Ghosh, J. Sci. Ind. Res. 77 (4) (2018) 208.
[23] Y.-S. Ma, S.-T. Huang, J.-G. Lin, Water. Sci. Technol. 42 (3-4) (2000) 155.
[24] O. Hamdaoui, E. Naffrechoux, L. Tifouti, C. Petrier, Ultrason. Sonochem. 10 (2003) 109.
[25] O. Hamdaoui, E. Naffrechoux, Ultrason. Sonochem. 16 (2009) 15.
[26] A. Tauber, H. P. Schuchmann, C. Von Sonntag, Ultrason. Sonochem. 7 (2000) 45.
[27] L. K. Weavers, N. Malmstadt, M. R. Hoffmann, Environ. Sci. Technol. 34 (2000) 1280.
[28] Y. Nagata, M. Nagakawa, H. Okuno, Y. Mizukoshi, B. Yim, Y. Maeda, Ultrason. Sonochem. 7 (2000) 115.
[29] F. Xie, Y. Xu, K. Xia, C. Jia, P. Zhang, Ultrason. Sonochem. 28 (2016) 199.
[30] K.-W. Jung, S. Y. Lee,.Y. J. Lee, J.-W. Choi, Ultrason. Sonochem. 57 (2019) 22.
[31] M.V. Bagal, P.R. Gogate, Ultrason. Sonochem. 21 (2014) 1.
[32] C.-J. Xu, H. Wang, D.-L. Lu, J.-H. Jiang, M. Zhou, J. Chem. Eng. Chinese U. 19 (2005) 567.
[33] P. J. D. Ranjit, K. Palanivelu, C.-S. Lee, Korean J. Chem. Eng. 25 (2008) 112.
[34] A. A. Pradhan, P. R. Gogate,Chem. Eng. J. 156 (2010) 77.
[35] L. Zhu, B. Chen, X. Shen, Environ. Sci. Technol. 34 (2000) 468.
[36] A. Kotronarou, G. Mills, M. R. Hoffmann, J. Phys. Chem. 95 (1991) 3630.
[37] Y. Jiang, C. Petrier, T. D. Waite, Ultrason. Sonochem. 9 (2002) 163.
[38] O. Moumeni, O. Hamdaoui, C. Petrier, Chem. Eng. Process. 62 (2012) 47.
[39] N. H. Ince, G. Tezcanli-Guyer, Ultrasonics. 42 (2004) 591.
[40] A. Mehrdad, S. Farkhondeh, F. Hasaspoor, J. Applied Chem. 12 (2018) 83.
[41] S. Rahman Setayesh, P. Nazari, N. Askari, J. Applied Chem. 14 (2019) 185, In Persian.
[42] S. Wang, Dyes Pigments. 76 (2008) 714.
[43] R. A. Torres, J. I. Nieto, E. Combet, C. Petrier, C. Pulgarin, Appl. Catal. B: Environ. 80 (2008) 168.
[44] C.-H. Wu, C.-H. Yu, J. Hazard. Mater. 169 (2009) 1179.