[1] Qasem, N. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: A comprehensive and critical review. Npj Clean Water, 4(1), 36.
[2] Khan Mohammadi, Azizi, Seyed Naser, Razavizadeh, & Bibi Marzieh. (2021). Investigating the removal of fluoride and chromium from aqueous solutions by silica nanoparticles and SBA-15 synthesized from corn plant organs. Applied Chemistry, 16(59), 165-180. (in persion)
[3] Anwer, H., Mahmood, A., Lee, J., Kim, K. H., Park, J. W., & Yip, A. C. (2019). Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges. Nano Research, 12, 955-972. [4] Rasheed, T., Bilal, M., Nabeel, F., Adeel, M., & Iqbal, H. M. (2019). Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environment international, 122, 52-66.
[5] Oluwole, A. O., Omotola, E. O., & Olatunji, O. S. (2020). Pharmaceuticals and personal care products in water and wastewater: A review of treatment processes and use of photocatalyst immobilized on functionalized carbon in AOP degradation. BMC chemistry, 14(1), 1-29.
[6] Esmail Pour, Larimi, Afsana Sadat, Kahraman Afshar, & Faqihi. (2023). Magnetic Fe₃O₄@SiO₂ Nanocomposite Coated with Ethylene Ditetraacetic Acid: An Effective and Recyclable Adsorbent for Cu Ion Removal from Aqueous System. Applied Chemistry, 17(65), 45-54.
[7] Karrari, P., Mehrpour, O., & Abdollahi, M. (2012). A systematic review on status of lead pollution and toxicity in Iran; Guidance for preventive measures. DARU Journal of Pharmaceutical Sciences, 20, 1-17.
[8] Pirsaheb, M., Khamutian, R., Pourhaghighat, S., & Salumahaleh, A. E. (2015). Review of heavy metal concentrations in Iranian water resources. International Journal of Health and Life Sciences, 1(1).
[9] M. Radfard, M. Yunesian, R. Nabizadeh, H. Biglari, S. Nazmara, M. Hadi, A.H. Mahvi, Hum. ecol. risk assess: An International Journal (2018).
[10] Einafshar, E., Khodadadipoor, Z., Nejabat, M., & Ramezani, M. (2021). Synthesis, Characterization and Application of α, β, and γ Cyclodextrin-Conjugated Graphene Oxide for Removing Cadmium Ions from Aqueous Media. Journal of Polymers and the Environment, 29, 3161-3173.
[11] Zaynab, M., Al-Yahyai, R., Ameen, A., Sharif, Y., Ali, L., Fatima, M. & Li, S. (2022). Health and environmental effects of heavy metals. Journal of King Saud University-Science, 34(1), 101653.
[12] Liang, L., Xi, F., Tan, W., Meng, X., Hu, B., & Wang, X. (2021). Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar, 3, 255-281.
[13] Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian journal of chemistry, 4(4), 361-377.
[14] Gunatilake, S. K. (2015). Methods of removing heavy metals from industrial wastewater. Methods, 1(1), 14.
[15] Muinde, V. M., Onyari, J. M., Wamalwa, B., & Wabomba, J. N. (2020). Adsorption of malachite green dye from aqueous solutions using mesoporous chitosan–zinc oxide composite material. Environmental Chemistry and Ecotoxicology, 2, 115-125.
[16] Palani, G., Arputhalatha, A., Kannan, K., Lakkaboyana, S. K., Hanafiah, M. M., Kumar, V., & Marella, R. K. (2021). Current trends in the application of nanomaterials for the removal of pollutants from industrial wastewater treatment—a review. Molecules, 26(9), 2799.
[17] Qdais, H. A., & Moussa, H. (2004). Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination, 164(2), 105-110.
[18] Borbor Azdari, & Farshad. (2016). Effective surface adsorption of Cu (II) and Cr(VI) metal ions using SBA-15 modified by reshaping. Applied Chemistry, 10(37), 101. (in persion)
[19] Zarngarian, Elhami Far, & Daoud. (2021). Cobalt (II) complex immobilized on functionalized graphene oxide as an effective catalyst for epoxidation of alkenes. Applied Chemistry, 16(59), 85-98. (in persion)
[20] Kyzas, G. Z., Deliyanni, E. A., Bikiaris, D. N., & Mitropoulos, A. C. (2018). Graphene composites as dye adsorbents. Chemical Engineering Research and Design, 129, 75-88.
[21] Sharma, V. K., McDonald, T. J., Kim, H., & Garg, V. K. (2015). Magnetic graphene–carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification. Advances in colloid and interface science, 225, 229-240
[22] Shamsi, M., Nabavi, S.R. Preparation and characterization of polyaniline/graphene oxide nanocomposite and its effectiveness in removing chromium (VI) from aqueous environments, Applied Chemistry, Applied Chemistry, 2018. (in persion)
[23] Zhi, D., Li, T., Li, J., Ren, H., & Meng, F. (2021). A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption. Composites Part B: Engineering, 211, 108642.
[24] Hosseini, S. G., Khodadadipoor, Z., Mahyari, M., & Zinab, J. M. (2019). Copper chromite decorated on nitrogen-doped graphene aerogel as an efficient catalyst for thermal decomposition of ammonium perchlorate particles. Journal of Thermal Analysis and Calorimetry, 138, 963-972.
[25] Shashmani, Najafi, & Hamida Al Sadat. (2020). Improvement of the preparation method of graphene oxide functionalized with Fe3O4: adsorption of Pb2+ and Pd2+ ions from aqueous solution. Applied Chemistry, 15(54), 9-30. (in persion)
[26] Belachew, N., Devi, D. R., & Basavaiah, K. (2016). Facile green synthesis of l-methionine capped magnetite nanoparticles for adsorption of pollutant Rhodamine B. Journal of Molecular Liquids, 224, 713-720.
[27] Kumar, A., & Khandelwal, M. (2014). Amino acid mediated functionalization and reduction of graphene oxide–synthesis and the formation mechanism of nitrogen-doped graphene. New Journal of Chemistry, 38(8), 3457-3467.
[28] Hosseini, S. G., Khodadadipoor, Z., & Mahyari, M. (2018). CuO nanoparticles supported on three‐dimensional nitrogen‐doped graphene as a promising catalyst for thermal decomposition of ammonium perchlorate. Applied Organometallic Chemistry, 32(1), e3959.
[29] Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the american chemical society, 80(6), 1339-1339.
[30] Belachew, N., Devi, D. R., & Basavaiah, K. (2016). Facile green synthesis of l-methionine capped magnetite nanoparticles for adsorption of pollutant Rhodamine B. Journal of Molecular Liquids, 224, 713-720.
[31] Sikder, M., Hosokawa, T., Saito, T., & Kurasaki, M. (2012). Application of α, β and γ cyclodextrin polyurethanes in the removal of size specific copper derivatives. Water Soc, 153, 243.
[32] Tie, S. L., Lin, Y. Q., Lee, H. C., Bae, Y. S., & Lee, C. H. (2006). Amino acid-coated nano-sized magnetite particles prepared by two-step transformation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 273(1-3), 75-83.
[33] Barth, A. (2000). The infrared absorption of amino acid side chains. Progress in biophysics and molecular biology, 74(3-5), 141-173.
[34] Abedi, Mohammad, Salmani, & Raeesi. (2013). Removal of cadmium from aqueous solutions by iron oxide magnetized biosorbent. Applied Chemistry, 8(28), 91-105. (in persion)
[35] Zafari, Seyyed Hamed, Saadatjoo, Naghi, & Shabani. (2020). Fe-Cu binary oxides as low-cost adsorbents and their application in photocatalytic removal of Acid 14 Red, Methyl Orange and Malachite Green in aqueous solutions. Applied Chemistry, 15(57), 29-44.
[36] Basavaiah, K., Pavan Kumar, Y., & Prasada Rao, A. V. (2013). A facile one-pot synthesis of polyaniline/magnetite nanocomposites by micelles-assisted method. Applied nanoscience, 3, 409-415. [37] Qiu, H., Liang, C., Zhang, X., Chen, M., Zhao, Y., Tao, T. & Liu, G. (2015). Fabrication of a biomass-based hydrous zirconium oxide nanocomposite for preferable phosphate removal and recovery. ACS applied materials & interfaces, 7(37), 20835-20844.
[38] Wang, L., Shi, C., Pan, L., Zhang, X., & Zou, J. J. (2020). Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: a review. Nanoscale, 12(8), 4790-4815.
[40] Goharshadi, E. K., & Moghaddam, M. B. (2015). Adsorption of hexavalent chromium ions from aqueous solution by graphene nanosheets: kinetic and thermodynamic studies. International Journal of Environmental Science and Technology, 12, 2153-2160.
[41] Qiu, H., Lv, L., Pan, B. C., Zhang, Q. J., Zhang, W. M., & Zhang, Q. X. (2009). Critical review in adsorption kinetic models. Journal of Zhejiang University-Science A, 10(5), 716-724.
[42] Kyzas, G. Z., Travlou, N. A., Kalogirou, O., & Deliyanni, E. A. (2013). Magnetic graphene oxide: effect of preparation route on reactive black 5 adsorption. Materials, 6(4), 1360-1376.
[43] Rosli, F. (2011). Statistical analaysis for removal of cadmium from aqueous solution at high pH. Aust. J. Basic Appl. Sci, 5(6), 440-446.
[44] Akl, M. A., & Abou-Elanwar, A. M. (2015). Adsorption studies of cd (II) from water by acid modified multiwalled carbon nanotubes. J Nanomed Nanotechnol, 6(6), 1.
[45] Goel, J., Kadirvelu, K., Rajagopal, C., & Garg, V. K. (2006). Cadmium (II) uptake from aqueous solution by adsorption onto carbon aerogel using a response surface methodological approach. Industrial & engineering chemistry research, 45(19), 6531-6537.
[46] Deng, X., Lü, L., Li, H., & Luo, F. (2010). The adsorption properties of Pb (II) and Cd (II) on functionalized graphene prepared by electrolysis method. Journal of hazardous materials, 183(1-3), 923-930.