Simultaneous Determination Spectrophotometric of New fushin and Victoria blue by method chemmometrics

Document Type : Original Article

Authors

اراک- دانشگاه آزاد اسلامی واحد اراک - دانشکده علوم- گروه شیمی

Abstract

Abstract

The simultaneous determination of New fushin and Victoria blue mixtures by spectrophotometric method is a difficult problem in analytical chemistry, due to spectral interferences, by multiariate calibration methods, such as partial least square (PLS) regression, it is possible to obtain a model adjusted to the concentration valuse of the mixtures used in the calibration range. Orthogonal signal correction (OSC) is a preprocessing technique used in the information unrelated to the target variables based on constrained principal component analvsis. OSC is a suitable perprocessing method for partial least squares calibration of mixtures without loss of prediction capacity using spectrophotometric method. In this study, the calibration model is based on absorption spectra in the 400-700 nm range for 25 different mixtures of New fushin and Victoria blue Calibration matrices were formed form samples containing 0/75-7/5 and 1/5-18 mg/L for New fushin and Victoria blue, respectively. The RMSEP for New fushin and Victoria blue with OSC-PLS were 0.0435 and 0.0477 µg/mL, respectively. This procedure allows the simultaneuse determination of New fushin and Victoria blue in synthetic and real samples and good reliability of the determiation was proved.

Keywords


[1] D. T. Sawyer, W. R. Heneman, J. M. Beebe, Chemistry Expriments for Intrumental Methods, John Wiley, New York, 1984.
[2] M. J. Ahmed, S. Banoo, Talanta, 48 (1999) 1085.
[3] J. W. Einax, H. W. Zwanzier, S.Gibe, Chemometrics in Environment Analysis,
John Wiley, (1997).
[4] D. L. Massart, B. G. M. vandeginste, L. M. C. Buydens, S. D. Jone, P. J. Lewi, J. Smeyers, Handbook Of Chemometrics and Qualimetrics, Part B, ElsevierScience, Amsterdam, 1997.
[5] D. L. Massart, B. G. M. Vandeginste, L. M. C. Buydens, S. D. Jone, P. J. Lewi,
J. Smeyers, Handbook of Chemometrics and Qualimetrics, Part B, Elsevier Science, Amsterdam, 1997.
[6] J. E. Jackson, G. S. Mudholkar, Technometrics, 21 (1979) 3.
[7] J. E. Jackson, "A User's Guide to Principal Components," John Wiley, New York, 1991.
[8] E. V. Thomas, D. M. Haaland, Anal. Chem. 62, 1091 (1990).
[9] M. Otto, J. Fresenius. Anal. Chem., 359 (1997) 123.
[10] Y. Ding, T. MU, Q. W, S-Si, Chemometr. Intell. Lab., 88 (2007) 167.
[11] Y. Meili, D. Yaping, W. Qingsheng, J. Iran. Chem. Res., 2 (2009) 33.
[12] R. G. Brereton, Chemometrics: Data Analysis for the Laboratory and Chemical Plant, John wiley Chichester, 2003.
[13] M. Barker, W. Rayens. J. Chemom., 17 (2003) 166.
[14] D. M. Haaland, E.V. Thomas, Anal. Chem., 60 (1988) 1193.
[15] M. J. R. Stone, Stat. Soc., 36 (1974) 111.
[16] J. Ghasemi, R. Amini, A. Niazi, Anal. Lett., 35 (2002) 533.
[17] R. Szostak, S. Mazurek, Analyst, 127 (2002) 144.
[18] K. Wiberg, A. S. Molin, S. P. Jacobosson, Talanta, 62 (2004) 567.
[19] S. Wold, H. Antti, F. Lindgren, J. Ohman. Chemom. Intel. Lab. Sys., 44 (1998)175.
[20] P. Geladi, B. R. Kowalski. Anal. Chim. Acta., 185, (1986) 1.
[21] M. K. D. Rambo, E. P. Amorim, M. M. C. Ferreira. Anal. Chim. Acta., 775(2013) 41.
[22] A. Tres, C. Ruiz-Samblas, G. van der Veer, S. M. van Ruth. Food Chem., 137, (2013) 142.
[23] A. Niazi, N. Khorshidi, P. Ghaemmaghami. Spectrochim. Acta A., 35 (2015) 69.
[24] Ch. Zhao, F. Wang, F. Gao. Chemom. Intel. Lab. Sys., 95 (2009)107.
[25] T. Fearn. Chemom. Intel. Lab. Sys., 50 (2000) 47.
[26] F. Bagheban-Shahri, A. Niazi. J. Water Reuse Desal., 6 (2016) 137.
[27] T. Momeni-Isfahani, A. Niazi. Spectrochim. Acta A., 120 (2014) 630.
[28] R. G. Brereton. Analyst, 125 (2000) 2125.
[29] E. Kurniawati, A. Rohman, K. Triyana. Meat Sci., 96 (2014) 94.
A. Akrami, A. Niazi, F. Bagheban-Shahri. J. Chem. Health Risk., 2 (2012) 33