Investigation on volumetric properties of 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid, acetonitrile, and their mixture using molecular dynamics simulation

Document Type : Original Article

Authors

Abstract

Molecular dynamics simulation is an appropriate method for microscpoic modeling of materials and is widely used in several fields of science and technology. Experimental measurement of thermodynamic properties of many materials is not economic due to time consuming and high cost of instruments. Using simulation methods such as molecular dynamics, thermodynamic properties of these materials can be computed and compared with experimental data. One of the important arguments in molecular dynamics simulation is application of appropriate combination ruls for dissimilar pair interactions. In this study, volumetric properties of 1-butyl-3-methylimidazolium hexafluorophosphate inonic liquid, acetonitrile, and their mixture are studied by molecular dynamics simulation and using three different combination rules for dissimilar pair interactions. Then the results are compared with experimental data inorder to evaluate validity of the applied combination rules.

Keywords


[1] B. J. Alder, T. E. Wainwright,  The Journal of Chemical Physics 27 (1957) 1208.
[2] A. Rahman, Physical Review 136 (1964) A405.
[3] F. H. Stillinger, A. Rahman, The Journal of Chemical Physics 60 (1974) 1545.
[4] A. C. Pan, T. M. Weinreich, S. Piana, D. E. Shaw, Journal of Chemical Theory and Computation 12 (2016) 1360.
[5] S. A. Pabit, A. M. Katz, I. S. Tolokh, A. Drozdetski, N. Baker, A. V. Onufriev, A. Pollack, The Journal of Chemical Physics 144 (2016) 205102.
[6] B. C. Goh, H. Wu, M. J. Rynkiewicz, K. Schulten, B. A. Seaton, F. X. McCormack, Biochemistry 55 (2016) 3692.
[7] A. P. Ramos, P. Lagüe, G. Lamoureux, M. Lafleur, Journal of Physical Chemistry B 120 (2016) 6951.
[8] N. C. F. Machado, L. D. Santos, B. G. Carvalho, P. Singh, C. A. Téllez Sato, N. G. Azoia, A. Cavaco-Paulo, A. A. Martin, P. P. Favero, Computers in Biology and Medicine 75 (2016) 151.
[9] J. M. Haile, Molecular Dynamics Simulation: Elementary Methods, John Wiley & Sons Inc. New York 1992.
[10] A. F. Tillack, L. E. Johnson, B. E. Eichinger, B. H. Robinson, (2016) DOI: 10.1021/acs.jctc.6b00219.
[11]  باقری احمد، میربخشی سید علیرضا، مجله شیمی کاربردی. ۱۳۹۴; ۱۰ (۳۵) :۷۳-۸۶.
[12] D. S. Karousos, E. Kouvelos, A. Sapalidis, K. Pohako-Esko, M. Bahlmann, P. S. Schultz, P. Wasserscheid, E. Siranidi, O. Vangeli, P. Falaras, N. Kanellopoulos, G. Em. Romanos, Industrial & Engineering Chemistry Research 55 (2016) 5748.
[13] G. Absalan, M. Akhond, M. Soliemani, H. Ershadifar, Journal of Electroanalytical Chemistry 761 (2016) 1.
[14] A. Karakulina, A. Gopakumar, I. Akçok, B. L. Roulier, T. LaGrange, S. A. Katsyuba, S. Das, P. J. Dyson, Angewandte Chemie 128 (2016) 300.
[15] C. Ragonese, D. Sciarrone, E. Grasso, P. Dugo, L. Mondello, Journal of Separation Science 39 (2016) 537.
[16] R. Wang, X. Qi, L. Zhao, S. Liu, S. Gao, X. Ma, Journal of Separation Science 39 (2016) 2444.
[17] W. Song, P. J. Rossky, M. Maroncelli, The Journal of Chemical Physics 119 (2003) 9145.
[18] B. E. F. Fender, G. D. Halsey, Jr., The Journal of Chemical Physics 36 (1962) 1886. 
[19] M. Waldman, A. Hagler, Journal of Computational Chemistry 14 (1993) 1077.
[20] W. Smith, I. T. Todorov, Molecular Simulations 32 (2006) 935.
[21] M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Oxford: Clarendon 1997.
[22] S. V. Sambasiovarao, O. Acevedo, Journal of Chemical Theory and Computation 5 (2009) 1038.
[23] A. M. Nikitin, A. P. Lyubartsev, Journal of Computational Chemistry 28 (2007) 2020.
[24] S. Nosé, Journal of Physics: Condensed Matter 2 (1990) 115.
[25] M. T. Zafarani-Moatter, H. Shekaari, Journal of Chemical Engineering Data 50 (2005) 1694.