Adsorption of parathion and chlorpyrifos organophosphoros pesticides with the iron doped boron nitride nanotubes; A theoretical study

Document Type : Original Article

Authors

Abstract

In this work, the interaction of two organophosphates, parathion and chlorpyrifos, with armchair and zigzag boron nitride nanotubes and their Fe doped derivatives in gaseous and aqueous phases was studied using the computational and conceptual density functional theory method. According to importance of van der Waals interactions for adsorbing parathion and chlorpyrifos on surface of mentioned boron nitride nanotubes, dispersion correction is performed by Grimme method as well as overlapping energy calculation. The results show that, the contribution of van der Waals interaction in adsorption energy is significantly large. Furthermore, it is turned out that doped nanotube derivatives compared to pristine nanotubes, especially armchair form nanotubes, make stronger adsorption. Also, if iron atom is located instead of nitrogen atom in doped nanotubes, the capability of nanotubes increases for adsorbing parathion and chlorpyrifos.

Keywords


[1] J. R. Alvarez-Corena, J. A. Bergendahl,  J. Environ. Manag. 181 (2016) 544-551.
[2] J. A. Fireston, T. S. Weller, G. S. Franklin, P. Wanson, JAMA Neurol. 1, 62 (2005) 91.
[3] S.V. kumar, M. d. Fareedullah, Y. Sudhakar, B. Venkateswarlu, E. A. Kumar, Arch. Appl. Sci. Res.  4, 2 (2010) 199.
[4] B. G. Katzung, Basic and Clinical Pharmacology; 10th ed., Asimon and Schuster co., 2005, pp 948.
[5] E. Fattahi, S. G. A. Jorsaraei, A. A. Moghadamnia, J. Babol. Univ. Med. Sci. 3, 15 (2013) 42.
[6] G. D. Stanwood, P. Levitt, Curr. Opin. Pharmacol. 4 (2004)65.
[7] M. Shayeghi, M. H. Dehghani, M. Alimohammadi, K. Goodini, J. Arthropod-Borne Dis. 1, 6 (2012) 45.
[8] S. Memon, N. Memon, S. Memon, J. Anal. Environ. Chem.2, 14 (2013) 28.
[9] P. Mahmoodi, M. Farhadian, A. R. Solaimany Nazar, A. Noroozi, J. Appl. Res. Water and Wastewater. 1 (2014) 18.
[10] K. Ponyadira, M. Naoto, J. Erni, H. Teruo, Am. J. Anal. Chem.  5 (2014) 70.
[11] E. Bazrafshan, A. H. Mahvi, S. Nasseri, M. Shaieghi, J. Environ. Health. Sci. Eng. 2, 4 (2007) 127.
[12] R. Wang, D. Zhang, R. Zhu, C. Liu, J. Mol. Model. 20 (2014) 2093.
[13] C. H. Park, S. G. Louie, Nano Lett. 8 (2008) 2200.
[14] H. P. Lan, L. H. Ye, S. A. Zhang, L. M. Peng, Appl. Phys. Lett. 94 (2009) 183110.
[15] B. Yan, C. Park, J. Ihm, G. Zhou, W. Duan, N. Park, J. Am. Chem. Soc. 130 (2008) 17012.
[16] Y. J. Cho, C. H. Kim, H. S. Kim, J. Park, H. C. Choi, H. J. Shin, G. Gao, H. S. Kang, Chem. Mater. 21 (2009) 136.
[17] G. Y. Gou, B. C. Pan, L. Shi, J. Am. Chem. Soc. 131 (2009) 4839.
[18] Z. H. Zhang, W. L. Guo, J. Am. Chem. Soc. 131 (2009) 6874.
[19] A. Asghari, S. Arghavani-Beydokhti, M. Rajabi, J. Appl. Chem. 37, 10 (2016) 111.
[20] م. دهقانی سلطانی، م. ع. طاهر ، مجله علمی پژوهشی شیمی کاربردی، سال یازدهم، شماره 39، تابستان (1395) 25.
[21] م. شیرزاد، س. م. هاشمیان‌زاده، ف. شفیعی، مجله علمی پژوهشی شیمی کاربردی، سال یازدهم، شماره 40، پاییز (1395) 55.
[22] S. Kalay, Z. Yilmaz, O. Sen, M. Emanet, E. Kazanc, M. Culha, J. Nanotechnol. 6 (2015) 84.
[23] T. H. Ferreira, P. R. O. da Silva, R. G. dos Santos, E. M. B. de Sousa, J. Biomater. Nanobiotecnol. 2 (2011) 426.
[24] M. Noei, Int. Sci. Index. 2, 9 (2015) 270.
[25] R. X. Wang, D. J. Zhang, R. X. Zhu, C. B. Liu, J. Mol. Model. 20 (2014) 2093.
[26] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
[27] H. J. Monkhorst, J. D. Pack, Phys. Rev. B 13 (1976) 5188.
[28] A. Klamt, J. Phys. Chem. 99 (1995) 2224.
[29] S. Grimme, J. Comput. Chem. 27 (2006) 1787-1799.
[30] R. P. Iczkowski, J. L. Margrave, J. Am. Chem. Soc. 83 (1961) 3547.
[31] X. Zhou, C. Rong, T. LU, S. Liu, Acta Phys. -Chim. Sin. 11, 30 (2014) 2055.
[32] S. Liu, J. Phys. Chem. A 12, 119 (2015) 3107.
[33] S. Lin, X. Ye, R. S. Johnson, H. Guo, J. Phys. Chem. C 117 (2013) 17319.