[1] P. Hoffmann, Tomorrow's energy: hydrogen, fuel cells, and the prospects for a cleaner planet: MIT press, 2012.
[2] J. Romm, The car and fuel of the future, Energy Policy, 34 (2006) 2609-2614.
[3] M. Balat, Potential importance of hydrogen as a future solution to environmental and transportation problems, Int. J. Hydrogen Energy, 33 (2008) 4013-4029.
[4] J.D. Holladay, J. Hu, D.L. King, Y. Wang, An overview of hydrogen production technologies, Catal. Today, 139 (2009) 244-260.
[5] T. Rostrup-Nielsen, Manufacture of hydrogen, Cataly. Today, 106 (2005) 293-296.
[6] J. Turner, G. Sverdrup, M.K. Mann, P.C. Maness, B. Kroposki, M. Ghirardi, et al., Renewable hydrogen production, Int. J. Energy Res., 32 (2008) 379-407.
[7] K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Prog. Energy Combust. Sci., 36 (2010) 307-326.
[8] S. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa, M. Berrettoni, et al., Advanced alkaline water electrolysis, Electrochim. Acta, 82 (2012) 384-391.
[9] M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis, Int. J. Hydrogen Energy, 38 (2013) 4901-4934.
[10] J. Barber, S. Morin, B. Conway, Specificity of the kinetics of H2 evolution to the structure of single-crystal Pt surfaces, and the relation between opd and upd H, J. Electroanal. Chem, 446(1998) 125-138.
[11] N. Danilovic, R. Subbaraman, D. Strmcnik, V.R. Stamenkovic, N.M. Markovic, Electrocatalysis of the HER in acid and alkaline media, J. Serb. Chem. Soc., 78 (2013) 2007-2015.
[12] A. Matsuda, R. Notoya, Hydrogen overvoltage on platinum in aqueous sodium hydroxide: part 1. Rate of the Discharge Step, J. Res. Inst. Catal., Hokkaido Univ., 14 (1966) 165-191.
[13] N. Krstajić, V. Jović, L. Gajić-Krstajić, B. Jović, A. Antozzi, G. Martelli, Electrodeposition of Ni–Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution, Int. J. Hydrogen Energy, 33 (2008) 3676-3687.
[14] R.K. Shervedani, A.R. Madram, Kinetics of hydrogen evolution reaction on nanocrystalline electrodeposited Ni62Fe35C3 cathode in alkaline solution by electrochemical impedance spectroscopy, Electrochim. Acta, 53 (2007) 426-433.
[15] L. Birry, A. Lasia, Studies of the hydrogen evolution reaction on Raney nickel-molybdenum electrodes, J. Appl. Electrochem., 34 (2004) 735-749.
[16] D. Miousse, A. Lasia, V. Borck, Hydrogen evolution reaction on Ni-Al-Mo and Ni-Al electrodes prepared by low pressure plasma spraying, J. Appl. Electrochem., 25 (1995) 592-602.
[17] P. Los, A. Lasia, Electrocatalytic properties of amorphous nickel boride electrodes for hydrogen evolution reaction in alkaline solution, J. Electroanal. Chem., 333 (1992) 115-125.
[18] A. Vijh, G. Bélanger, R. Jacques, Electrolysis of water on silicides of some transition metals in alkaline solutions, Int. J. Hydrogen Energy, 17 (1992) 479-483.
[19] Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction, J. Am. Chem. Soc., 133 (2011) 7296-7299.
[20] S. Shibli, V. Dilimon, Development of TiO2-supported nano-RuO2-incorporated catalytic nickel coating for hydrogen evolution reaction, Int. J. Hydrogen Energy, 33 (2008) 1104-1111.
[21] J. Cheng, H. Zhang, H. Ma, H. Zhong, Y. Zou, Study of carbon-supported IrO2 and RuO2 for use in the hydrogen evolution reaction in a solid polymer electrolyte electrolyzer, Electrochim. Acta, 55 (2010) 1855-1861.
[22] I. Kodintsev, S. Trasatti, Electrocatalysis of H2 evolution on RuO2+IrO2 mixed oxide electrodes, Electrochim. Acta, 39 (1994) 1803-1808.
[23] D. Miousse, A. Lasia, Hydrogen evolution reaction on RuO2 electrodes in alkaline solutions, J. New Mater. Electrochem. Syst., 2 (1999) 71-78.
[24] C. Angelinetta, S. Trasatti, L.D. Atanososka, R. Atanasoski, Surface properties of RuO2+ IrO2 mixed oxide electrodes, J. Electroanal. Chem. Interfacial electrochem., 214 (1986) 535-546.
[25] L. Chen, D. Guay, A. Lasia, Kinetics of the Hydrogen Evolution Reaction on RuO2 and IrO2 Oxide Electrodes in H2SO4 Solution: An AC Impedance Study, J. Electrochem. Soc., 143 (1996) 3576-3584.
[26] E. Kötz, S. Stucki, Ruthenium dioxide as a hydrogen-evolving cathode, J. Appl. Electrochem., 17 (1987) 1190-1197.
[27] J. Boodts, S. Trasatti, Hydrogen evolution on iridium oxide cathodes, J. Appl. Electrochem., 19 (1989) 255-262.
[28] N. Spataru, J.G. Le Helloco, R. Durand, A study of RuO2 as an electrocatalyst for hydrogen evolution in alkaline solution, J. Appl. Electrochem., 26 (1996) 397-402.
[29] C.C. Hu, M.J. Liu, K.H. Chang, Anodic deposition of hydrous ruthenium oxide for supercapacitors, J. Power Sources, 163 (2007) 1126-1131.
[30] N. Yoshida, Y. Yamada, S.I. Nishimura, Y. Oba, M. Ohnuma, A. Yamada, Unveiling the Origin of Unusual Pseudocapacitance of RuO2.nH2O from Its Hierarchical Nanostructure by Small-Angle X-ray Scattering, J. Phys. Chem. C, 117 (2013) 12003-12009.
[31] I. Kodintsev, S. Trasatti, M. Rubel, A. Wieckowski, N. Kaufher, X-ray photoelectron spectroscopy and electrochemical surface characterization of iridium (IV) oxide+ruthenium (IV) oxide electrodes, Langmuir, 8 (1992) 283-290.
[32] Z. Yi, C. Kangning, W. Wei, J. Wang, S. Lee, Effect of IrO2 loading on RuO2–IrO2–TiO2 anodes: a study of microstructure and working life for the chlorine evolution reaction, Ceram. Int., 33 (2007) 1087-1091.
[33] V. Natarajan, S. Basu, Performance and degradation studies of RuO2–Ta2O5 anode electrocatalyst for high temperature PBI based proton exchange membrane water electrolyser, Int. J. Hydrogen Energy, 40 (2015) 16702-16713.
[34] G. Vercesi, J.Y. Salamin, and C. Comninellis, Morphological and microstructural the Ti/IrO2-Ta2O5 electrode: effect of the preparation temperature, Electrochim. Acta, 36 (1991) 991-998.
[35] H. Over, Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: from fundamental to applied research, Chem. Rev., 112 (2012) 3356-3426.
[36] A. Cornell, D. Simonsson, Ruthenium dioxide as cathode material for hydrogen evolution in hydroxide and chlorate solutions, J. Electrochem. Soc., 140 (1993) 3123-3129.
[37] A.T. Marshall, S. Sunde, M. Tsypkin, R. Tunold, Performance of a PEM water electrolysis cell using IrxRuyTazO2 electrocatalysts for the oxygen evolution electrode, Int. J. Hydrogen Energy, 32 (2007) 2320-2324.
[38] U. Lačnjevac, B. Jović, V. Jović, V. Radmilović, N. Krstajić, Kinetics of the hydrogen evolution reaction on Ni-(Ebonex-supported Ru) composite coatings in alkaline solution, Int. J. Hydrogen Energy, 38 (2013) 10178-10190.
[39] T.C. Wen, C.C. Hu, Hydrogen and Oxygen Evolutions on Ru‐Ir Binary Oxides, J. Electrochem. Soc., 139 (1992) 2158-2163.
[40] R. Savinell, R. Zeller, J. Adams, Electrochemically active surface area voltammetric charge correlations for ruthenium and iridium dioxide electrodes, J. Electrochem. Soc., 137 (1990) 489-494.
[41] E. Frackowiak, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39 (2001) 937-950.
[42] B.O. Park, C. Lokhande, H.S. Park, K.D. Jung, O.S. Joo, Electrodeposited ruthenium oxide (RuO2) films for electrochemical supercapacitors, J. Mater. Sci., 39 (2004) 4313-4317.
[43] H. Chen, S. Trasatti, Cathodic behaviour of IrO2 electrodes in alkaline solution: Part 2. Kinetics and electrocatalysis of H2 evolution, J. Electroanal. Chem., 357 (1993) 91-103.
[44] J.K. Nørskov, T. Bligaard, A. Logadottir, J. Kitchin, J. Chen, S. Pandelov, et al., Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc., 152 (2005) J23-J26.
[45] Y. Mo, W.B. Cai, J. Dong, P.R. Carey, D.A. Scherson, In situ surface enhanced Raman scattering of ruthenium dioxide films in acid electrolytes, Electrochem. Solid-State Lett., 4 (2001) E37-E38.