Electrochemical Evaluation of Ni/RuO2 and Ni/RuO2/Mixed- Metal Oxide Coatings Electrodes toward Hydrogen Evolution Reaction in Alkaline Medium

Document Type : Original Article

Authors

Abstract

Ni/RuO2 electrode was fabricated by electrochemical deposition from an acidic RuCl3 solution at room temperature, then annealing at 120oC for 150 min. Morphology characterization revealed a mud-crack structure and electrochemical investigations of Ni/RuO2 and Ni bare substrate indicated more activity of Ni/RuO2 toward hydrogen evolution reaction. Afterward, RuO2-TiO2 (20-80), RuO2-TiO2-IrO2 (20-60-20) and RuO2-TiO2-Ta2O5 (20-60-20) mol. % were constructed by sol gel and thermal decomposition at 450oC on previously prepared Ni/RuO2 substrates. SEM micrographs showed the most roughness for RuO2-TiO2-IrO2 coating. XRD analysis revealed the formation of solid solution structures between RuO2 by IrO2 and Ta2O5. Electrochemical studies, including activity and stability studies also revealed the excellent performance for RuO2-TiO2-IrO2 due to its more surface roughness and also stabilizing effect of IrO2 and RuO2 on each other.

Keywords


[1]     P. Hoffmann, Tomorrow's energy: hydrogen, fuel cells, and the prospects for a cleaner planet: MIT press, 2012.
[2]     J. Romm, The car and fuel of the future, Energy Policy, 34 (2006) 2609-2614.
[3]     M. Balat, Potential importance of hydrogen as a future solution to environmental and transportation problems, Int. J. Hydrogen Energy, 33 (2008) 4013-4029.
[4]     J.D. Holladay, J. Hu, D.L. King, Y. Wang, An overview of hydrogen production technologies, Catal. Today, 139 (2009) 244-260.
[5]     T. Rostrup-Nielsen, Manufacture of hydrogen, Cataly. Today, 106 (2005) 293-296.
[6]     J. Turner, G. Sverdrup, M.K. Mann, P.C. Maness, B. Kroposki, M. Ghirardi, et al., Renewable hydrogen production, Int. J. Energy Res., 32 (2008) 379-407.
[7]     K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Prog. Energy Combust. Sci., 36 (2010) 307-326.
[8]     S. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa, M. Berrettoni, et al., Advanced alkaline water electrolysis, Electrochim. Acta, 82 (2012) 384-391.
[9]     M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis, Int. J. Hydrogen Energy, 38 (2013) 4901-4934.
[10]   J. Barber, S. Morin, B. Conway, Specificity of the kinetics of H2 evolution to the structure of single-crystal Pt surfaces, and the relation between opd and upd H, J. Electroanal. Chem, 446(1998) 125-138.
[11]   N. Danilovic, R. Subbaraman, D. Strmcnik, V.R. Stamenkovic, N.M. Markovic, Electrocatalysis of the HER in acid and alkaline media, J. Serb. Chem. Soc., 78 (2013) 2007-2015.
[12]   A. Matsuda, R. Notoya, Hydrogen overvoltage on platinum in aqueous sodium hydroxide: part 1. Rate of the Discharge Step, J. Res. Inst. Catal., Hokkaido Univ., 14 (1966) 165-191.
[13]   N. Krstajić, V. Jović, L. Gajić-Krstajić, B. Jović, A. Antozzi, G. Martelli, Electrodeposition of Ni–Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution, Int. J. Hydrogen Energy, 33 (2008) 3676-3687.
[14]   R.K. Shervedani, A.R. Madram, Kinetics of hydrogen evolution reaction on nanocrystalline electrodeposited Ni62Fe35C3 cathode in alkaline solution by electrochemical impedance spectroscopy, Electrochim. Acta, 53 (2007) 426-433.
[15]   L. Birry, A. Lasia, Studies of the hydrogen evolution reaction on Raney nickel-molybdenum electrodes, J. Appl.  Electrochem., 34 (2004) 735-749.
[16]   D. Miousse, A. Lasia, V. Borck, Hydrogen evolution reaction on Ni-Al-Mo and Ni-Al electrodes prepared by low pressure plasma spraying, J. Appl. Electrochem., 25 (1995) 592-602.
[17]   P. Los, A. Lasia, Electrocatalytic properties of amorphous nickel boride electrodes for hydrogen evolution reaction in alkaline solution, J. Electroanal. Chem., 333 (1992) 115-125.
[18]   A. Vijh, G. Bélanger, R. Jacques, Electrolysis of water on silicides of some transition metals in alkaline solutions, Int. J. Hydrogen Energy, 17 (1992) 479-483.
[19]   Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction, J. Am.  Chem. Soc., 133 (2011) 7296-7299.
[20]   S. Shibli, V. Dilimon, Development of TiO2-supported nano-RuO2-incorporated catalytic nickel coating for hydrogen evolution reaction, Int. J. Hydrogen Energy, 33 (2008) 1104-1111.
[21]   J. Cheng, H. Zhang, H. Ma, H. Zhong, Y. Zou, Study of carbon-supported IrO2 and RuO2 for use in the hydrogen evolution reaction in a solid polymer electrolyte electrolyzer, Electrochim. Acta, 55 (2010) 1855-1861.
[22]   I. Kodintsev, S. Trasatti, Electrocatalysis of H2 evolution on RuO2+IrO2 mixed oxide electrodes, Electrochim. Acta, 39 (1994) 1803-1808.
[23]   D. Miousse, A. Lasia, Hydrogen evolution reaction on RuO2 electrodes in alkaline solutions, J. New Mater. Electrochem. Syst., 2 (1999) 71-78.
[24]   C. Angelinetta, S. Trasatti, L.D. Atanososka, R. Atanasoski, Surface properties of RuO2+ IrO2 mixed oxide electrodes, J. Electroanal. Chem. Interfacial electrochem., 214 (1986) 535-546.
[25]   L. Chen, D. Guay, A. Lasia, Kinetics of the Hydrogen Evolution Reaction on RuO2 and IrO2 Oxide Electrodes in H2SO4 Solution: An AC Impedance Study, J. Electrochem. Soc., 143 (1996) 3576-3584.
[26]   E. Kötz, S. Stucki, Ruthenium dioxide as a hydrogen-evolving cathode, J. Appl. Electrochem., 17 (1987) 1190-1197.
[27]   J. Boodts, S. Trasatti, Hydrogen evolution on iridium oxide cathodes, J. Appl. Electrochem., 19 (1989) 255-262.
[28]   N. Spataru, J.G. Le Helloco, R. Durand, A study of RuO2 as an electrocatalyst for hydrogen evolution in alkaline solution, J. Appl. Electrochem., 26 (1996) 397-402.
[29]   C.C. Hu, M.J. Liu, K.H. Chang, Anodic deposition of hydrous ruthenium oxide for supercapacitors, J. Power Sources, 163 (2007) 1126-1131.
[30]   N. Yoshida, Y. Yamada, S.I. Nishimura, Y. Oba, M. Ohnuma, A. Yamada, Unveiling the Origin of Unusual Pseudocapacitance of RuO2.nH2O from Its Hierarchical Nanostructure by Small-Angle X-ray Scattering, J. Phys. Chem. C, 117 (2013) 12003-12009.
[31]   I. Kodintsev, S. Trasatti, M. Rubel, A. Wieckowski, N. Kaufher, X-ray photoelectron spectroscopy and electrochemical surface characterization of iridium (IV) oxide+ruthenium (IV) oxide electrodes, Langmuir, 8 (1992) 283-290.
[32]   Z. Yi, C. Kangning, W. Wei, J. Wang, S. Lee, Effect of IrO2 loading on RuO2–IrO2–TiO2 anodes: a study of microstructure and working life for the chlorine evolution reaction, Ceram. Int., 33 (2007) 1087-1091.
[33]   V. Natarajan, S. Basu, Performance and degradation studies of RuO2–Ta2O5 anode electrocatalyst for high temperature PBI based proton exchange membrane water electrolyser, Int. J. Hydrogen Energy, 40 (2015) 16702-16713.
[34]   G. Vercesi, J.Y. Salamin, and C. Comninellis, Morphological and microstructural the Ti/IrO2-Ta2O5 electrode: effect of the preparation temperature, Electrochim. Acta, 36 (1991) 991-998.
[35]   H. Over, Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: from fundamental to applied research, Chem. Rev., 112 (2012) 3356-3426.
[36]   A. Cornell, D. Simonsson, Ruthenium dioxide as cathode material for hydrogen evolution in hydroxide and chlorate solutions, J. Electrochem. Soc., 140 (1993) 3123-3129.
[37]   A.T. Marshall, S. Sunde, M. Tsypkin, R. Tunold, Performance of a PEM water electrolysis cell using IrxRuyTazO2 electrocatalysts for the oxygen evolution electrode, Int. J. Hydrogen Energy, 32 (2007) 2320-2324.
[38]   U. Lačnjevac, B. Jović, V. Jović, V. Radmilović, N. Krstajić, Kinetics of the hydrogen evolution reaction on Ni-(Ebonex-supported Ru) composite coatings in alkaline solution, Int. J. Hydrogen Energy, 38 (2013) 10178-10190.
[39]   T.C. Wen, C.C. Hu, Hydrogen and Oxygen Evolutions on Ru‐Ir Binary Oxides, J.  Electrochem.  Soc., 139 (1992) 2158-2163.
[40]   R. Savinell, R. Zeller, J. Adams, Electrochemically active surface area voltammetric charge correlations for ruthenium and iridium dioxide electrodes, J. Electrochem. Soc., 137 (1990) 489-494.
[41]   E. Frackowiak, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39 (2001) 937-950.
[42]   B.O. Park, C. Lokhande, H.S. Park, K.D. Jung, O.S. Joo, Electrodeposited ruthenium oxide (RuO2) films for electrochemical supercapacitors, J. Mater. Sci., 39 (2004) 4313-4317.
[43]   H. Chen, S. Trasatti, Cathodic behaviour of IrO2 electrodes in alkaline solution: Part 2. Kinetics and electrocatalysis of H2 evolution, J. Electroanal. Chem., 357 (1993) 91-103.
[44]   J.K. Nørskov, T. Bligaard, A. Logadottir, J. Kitchin, J. Chen, S. Pandelov, et al., Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc., 152 (2005) J23-J26.
[45]   Y. Mo, W.B. Cai, J. Dong, P.R. Carey, D.A. Scherson, In situ surface enhanced Raman scattering of ruthenium dioxide films in acid electrolytes, Electrochem. Solid-State Lett., 4 (2001) E37-E38.