Acidic Brønsted ionic liquids catalyzed the preparation of 2-amino-3-cyanopyridine derivatives under ambient and solvent-free conditions

Document Type : Original Article

Authors

1 University of Sistan and Baluchestan, Zahedan, Iran

2 Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan

Abstract

The acidic ionic liquids, 2-pyrrolidonium hydrogensulfate, N-methyl-2-pyrrolidonium hydrogensulfate, triphenyl(propyl-3-sulphonyl)phosphonium toluenesulfonate and (4-sulfobutyl) tris (4-sulfophenyl) phosphonium hydrogensulfate catalyzed one-pot three-component condensation between aromatic aldehydes, substituted acetophenones, malononitrile and ammonium acetate to afford corresponding 2-amino-3-cyanopyridine derivatives. This synthetic method has the remarkable advantages such as mild reaction conditions and good isolated yields, short reaction time, and use of green catalysts.
The acidic ionic liquids, 2-pyrrolidonium hydrogensulfate, N-methyl-2-pyrrolidonium hydrogensulfate, triphenyl(propyl-3-sulphonyl)phosphonium toluenesulfonate and (4-sulfobutyl) tris (4-sulfophenyl) phosphonium hydrogensulfate catalyzed one-pot three-component condensation between aromatic aldehydes, substituted acetophenones, malononitrile and ammonium acetate to afford corresponding 2-amino-3-cyanopyridine derivatives. This synthetic method has the remarkable advantages such as mild reaction conditions and good isolated yields, short reaction time, and use of green catalysts.
The acidic ionic liquids, 2-pyrrolidonium hydrogensulfate, N-methyl-2-pyrrolidonium hydrogensulfate, triphenyl(propyl-3-sulphonyl)phosphonium toluenesulfonate and (4-sulfobutyl) tris (4-sulfophenyl) phosphonium hydrogensulfate catalyzed one-pot three-component condensation between aromatic aldehydes, substituted acetophenones, malononitrile and ammonium acetate to afford corresponding 2-amino-3-cyanopyridine derivatives. This synthetic method has the remarkable advantages such as mild reaction conditions and good isolated yields, short reaction time, and use of green catalysts.

Keywords

Main Subjects


[1] P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis (Wiley-VCH, Weinheim, 2008)
[2] P. Wasserscheid, W. Keim, Angew. Chem. Int. Ed. 39 (2000) 3773.
[3] M. Golmohammadi Afkham, A. Elhampour, F. Nemati J. Appl. Chem. 10 (2016) 55.
[4] N. Nowrouzi, S. Keshtegar J. Appl. Chem. 11 (2016) 115.
[5] A. Nefzi, J. M. Ostresh, R. A. Houghten, Chem. Rev. 97 (1997) 449.
[6] L. A. Thompson, Curr. Opin. Chem. Biol. 4 (2000) 324.
[7] A. Dömling, Curr. Opin. Chem. Biol. 6 (2002) 306.
[8] M. M. Hosseini, E. Kolvari, M. Vahidian, R. BagheriJ. Appl. Chem. 11 (2017) 109.
[9] F. Mohamadpour, M. Lashkari, M. T. Maghsoodlou, R. Heydari, J. Appl. Chem. 10 (2016) 79.
[10] T. Murata, M. Shimada, S. Sakakibara, T. Yoshino, H. Kadono, T. Masuda, M. Shimazaki, T. Shintani, K. Fuchikami, K. Sakai, H. Inbe, K. Takeshita, T.  Niki, M. Umeda, K. B. Bacon, K. B. Ziegelbauer, T. B. Lowinger, Bioorg. Med. Chem. Lett. 13 (2003) 913.
[11] A. R. Gholap, K. S. Toti, F. Shirazi, R. Kumari, M. K. Bhat, M. V. Deshpande, K. V. Srinivasan, Bioorg. Med. Chem. 15 (2007) 6705.
[12] F. Zhang, Y. Zhao, L. Sun, L. Ding, Y. Gu, P. Gong, Eur. J. Med. Chem. 46 (2011) 3149.
[13] A. G. Hammam, N. A. A. EI-Hafez, W. H. Midura, M.Z. Mikolajczyk, Naturforschung B: J. Chem. Sci. 55 (2000) 417.
[14] S. G. Konda, V. T. Khedkar, B. S. Dawane, J. Chem. Pharm. Res. 2 (2010)187.
[15] D. C. Mungra, M. P. Patel, R. G. Patel, Arkivoc xiv (2009) 64.
[16] T. Murata, M. Shimada, S. Sakakibara, T. Yoshino, T. Masuda, T.  Shintani, H.  Sato, Y. Koriyama, K. Fukushima, N. Nunami, M.Yamauchi, K. Fuchikami, H. Komura, A. Watanabe, K. B. Ziegelbauer, K. B. Bacon, T. B. Lowinger, Bioorg. Med. Chem. Lett. 14 (2004) 4019.
[17] J. J. Baldwin, E. L. Engelhardt, R. Hirschmann, G. S.  Pontic, J. G. Atkinson, Wasson, B. K. Sweet, C. S. Scriabine, A,  J. Med. Chem. 23 (1980) 65.
[18] F. Shi, V. Tu, F. Fang, T. Li, Arkivoc 137 (2005).
[19] S. J. Tu, H. Jiang, Q. Y. Zhuang, C. B. Miao, D. Q. Shi, X. S. W. J. Zhou, S. J. Ji, Z. L. Shen, J. Organomet. Chem. 691 (2006) 1356.
[20] W. J. Zhou, S. J. Ji, Z. L. Shen, J. Organomet. Chem. 691 (2006) 1356.
[21] R. Gupta, A. Jain, M. Jain, R. Joshi, Bull. Korean Chem. Soc. 31 (2010) 3180.
[22] M. M. Heravi, S. Y. S. Beheshtiha, M. Dehghani, N. Hosseintash, J. Iran. Chem. Soc. 12 (2015) 2075.
[23] S. S. Mansoor, K. Aswin, K. Logaiya, P. N. Sudhan, S. Malik, Res. Chem. Intermed. 40 (2014) 871.
[24] Wang, Y. C. Gao, Chin. J. Org. Chem. 23 (2003) 488.
[25] A. N. Vasiliev, Y. S. Kayukov, O. E. Nasakin, A. N. Lyshchikov, V. N. Nesterov, O. V. Kayukova, O. V. Poulkherovskaya, Chem. Heterocycl. Compd. 37 (2001) 309.
[26] R. Khalifeh, M. Ghamari, J. Braz. Chem. Soc. 27 (2016) 759.
[27] M. A. Zolfigol, M. Kiafara, M. Yariea, A. Taherpourb, M. Saeidi-Rada, RSC Adv. 6 (2016) 50100.
[28] T. S. Jin, A. Q. Wang, F. Shi, L. S. Han, L. B. Liu, T. S. Li, Arkivoc xiv (2006) 78.
[29] J. Tang, L. Wang, Y. Yao, L. Zhang, W. Wang, Tetrahedron Lett. 52 (2011) 509.
[30] A. S. Girgis, A. Kalmouch, H. M. Hosni, Amino Acids 26 (2004) 139.
[31] F. Shi, S. J. Tu, F. Fang, T. J. Li, Arkivoc (2005) 137.
[32] P. G othawal, G. Malhotra, Y. K. Srivastava, E-J. Chem. 8 (2011) 119.
[33] S. Kambe, K. Saito, Synthesis (1980) 366.
[34] E. Mollashahi, H. Gholami, M. Kangani, M. Lashkari, MT. Maghsoodlou, Heteroatom Chem. 26 (2016) 322.
[35] N. Hazeri, M.T. Maghsoodlou, F. Mir, M.  Kangani,H. Saravani, E. Molashahi, Chin. J. Catal. 35 (2014) 391.
[36] C. Zhang, X-Y. Pan, M-J. Yu, L. Jin, G. Wu, Chem. Eng. J. 209 (2012) 464.
[37] V.S. Patil, V.S. Padalkar, A.S.Chaudhari, N. Sekar, Catal. Sci. Technolo. 2 (2012) 1681.
[38] C. Cole, J.L. Jensen, I. Nati, K.L.T. Tran, K.J. Weaver, D. Forbes, J. Am. Chem. Soc. 124 (2002) 5962.
[39] B. Shaohua, C. Lu, J. Yongjun, Y. Jianguo, Chin. J. Chem. 28 (2010) 2119.
[40] J. Tang, L. Wang, Y. Yao, L. Zhang, W. Wang, Tetrahedron Lett. 52 (2011) 509.
[41] R. Ghorbani-Vaghei, Z. Toghraei-Semiromi, R. Karimi-Nami, C. R. Chimie. 16 (2013) 1111.
[42] S. Khaksar, M. Yaghoobi, J. Fluorine Chem. 142 (2012) 41.