Green and facile synthesis of graphene supported Pt nanoparticles for oxygen reduction reaction in polymer electrolyte fuel cells

Document Type : Original Article


Department of applied chemistry.islamic azad university. tehran north branch


IIn this work we report a facile and green approach to synthesis of graphene nanosheets(GNS) supported Pt nanoparticles (Pt/GNS),in which graphene acts as a high surface area and conductive host for Pt nanoparticles for oxygen reduction reaction in fuel cells. Several phytochemicals extracted from different natural leaves of plants are employed as green and eco-friendly reducing agents in the synthesis of various silver, gold, platinum, and copper nanoparticles. In this study, Cherry leaf extracts were employed as a green reducing agent to reduce graphene oxide and Pt nanoparticles. The prepared Pt/GNS exhibits greatly enhanced electrochemical performance than commercial (ElectroChem Pt/C). These are attributed to the much graphitized degree of GNS in comparison to carbon black and the improved Pt-carbon interaction in Pt/GNS,high surface area and electrical conductivity of graphene support in Pt/GNS.


Main Subjects

[1]        K. Okaya, H. Yano, H. Uchida, M. Watanabe, ACS Applied Materials and Interfaces 2 (2010) 888.
[2]        B. Guenot, M. Cretin, C. Lamy, J Appl Electrochem 45 (2015) 973.
[3]        H. Gharibi, M. Faraji, M. Kheirmand, Electroanalysis 24 (2012) 2354.
[4]        A. Heydari, H. Gharibi, J Power Sources 325 (2016) 808.
[5]        H. Gharibi, F. Yasi, M. Kazemeini, A. Heydari, F. Golmohammadi, RSC Adv. 5 (2015) 85775.
[6]        S. S. Taghavi, A. Asghari, A. Tavasoli, Applied Chemistry 11 (2016) 129.
[7]        L. Zhao, Z.B. Wang, J.L. Li, J.J. Zhang, X.L. Sui, L.M. Zhang, J. Mater. Chem. A 3 (2015) 5313.
[8]        M.J. Allen, V.C. Tung, R.B. Kaner, Chemical Reviews 110 (2010) 132.
[9]        X. Gao, J. Jang, S. Nagase, Journal of Physical Chemistry C 114 (2010) 832.
[10]      H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, Y.H. Lee, Advanced Functional Materials 19 (2009) 1987.
[11]      B. Seger, P.V. Kamat, Journal of Physical Chemistry C 113 (2009) 7990.
[12]      E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma, Nano Letters 9 (2009) 2255.
[13]      S. Guo, S. Dong, E. Wang, ACS Nano 4 (2010) 547.
[14]      Q. Liu, Y.R. Xu, A.J. Wang, J.J. Feng, Journal of Power Sources 302 (2016) 394.
[15]      W.S. Hummers Jr, R.E. Offeman, Journal of the American Chemical Society 80 (1958) 1339.
[16]      Z.S. Wu, W. Ren, L. Gao, B. Liu, C. Jiang, H.M. Cheng, Carbon 47 (2009) 493.
[17]      H.M. Ju, S.H. Choi, S.H. Huh, Journal of the Korean Physical Society 57 (2010) 1649.
[18]      J. Yan, T. Wei, B. Shao, F. Ma, Z. Fan, M. Zhang, C. Zheng, Y. Shang, W. Qian, F. Wei, Carbon 48 1731.
[19]      C.V. Rao, A.L.M. Reddy, Y. Ishikawa, P.M. Ajayan, Carbon 49 931.
[20]      J. Yan, T. Wei, B. Shao, F. Ma, Z. Fan, M. Zhang, C. Zheng, Y. Shang, W. Qian, F. Wei, Carbon 48 (2010) 1731.
[21]      Y.H. Ding, P. Zhang, Q. Zhuo, H.M. Ren, Z.M. Yang, Y. Jiang, Nanotechnology 22 (2011).
[22]      A.C. Ferrari, Solid State Communications 143 (2007) 47.
[23]      H. Huang, H. Chen, D. Sun, X. Wang, Journal of Power Sources 204 (2012) 46.
[24]      H. Gharibi, M. Javaheri, M. Kheirmand, R.A. Mirzaie, International Journal of Hydrogen Energy In Press, Corrected Proof.
[25]      A. Pozio, M. De Francesco, A. Cemmi, F. Cardellini, L. Giorgi, Journal of Power Sources 105 (2002) 13.
[26]      Y. Li, W. Gao, L. Ci, C. Wang, P.M. Ajayan, Carbon 48 (2009) 1124.
[27]      T. Soboleva, K. Malek, Z. Xie, T. Navessin, S. Holdcroft, ACS Applied Materials and Interfaces 3 (2011) 1827.
[28]      J. Zhang, PEM Fuel Cell Electrocatalysts and  Catalyst Layers Fundamentals and Applications, Springer-, london, 2008.
[29]      Y. Liu, C. Ji, W. Gu, J. Jorne, H.A. Gasteiger, Journal of the Electrochemical Society 158 (2011) B614.