Investigation of photo-catalytic effect of SnO2/AC nanocomposite on photo-degradation of basic yellow 13 and rodamin b dyes

Document Type : Original Article


1 Department of Chemistry, Semnan University, Semnan 35195-363, Iran

2 Analytical chemistry, chemistry, Semnan University, Semnan, Iran.

3 Analytical chemistry, chemistry, Semnan university, Semnan, Iran


In this study, the degradation of the two dyes basic in their binary mixture is examined under the light irradiation in the presence of catalyst. A mercury lamp, which was located at a distance 30 cm from the solution surface, was used as the UV irradiation source. The first-order derivative spectra was used to obtain the residual concentration of each dye in mixtures after a given time of photo-degradation. The and techniques are employed to confirm the nanocomposite prepared. The effects of the parameters involved in the photo-catalytic activity including the solution, catalyst dosage, and concentrations of the two dyes are studied. The results obtained show that under the optimum experimental conditions and after 60 minutes of the UV light irradiation in the presence of the 8 mg catalyst and in the of 5.5, the percentage degradation of the two dyes are more than 90%.


Main Subjects

[1] Kumar, P. S. S., Sivakumar, R., Anandan, S.; Madhavan, J., Maruthamuthu, P., Ashokkumar, M., , water research, 42 (2008) 4878.
[2] Tan, T. T. Y., Yip, C. K., Beydoun, D., Amal, R., Chem. Eng. J, 95 (2003) 179.
[3] Bhattacharjee, A., Ahmaruzzaman, M., Sinha, T., Spectroc. Acta. A, 136 (2015) 751.
[4] Cai, Z.-Q., Shen, Q.-H., Gao, J.-W., J. Inorg. Mater, 22 (2007) 733.
[5] Zhu, L.-P., Bing, N.-C., Yang, D.-D., Yang, Y., Liao, G.-H., Wang, L.-J., Cryst. Eng. Comm, 13 (2011) 4486.
[6] Kim, S. P., Choi, M. Y., Choi, H. C., Applied .Surface .Science, 357 (2015) 302.
[7] Namasivayam, C., Kavitha, D., Dyes. Pigments, 54 (2002) 47.
[8] Aksu, Z., Tezer, S., Process. Biochem, 36 (2000) 431.
[9] Xu, Y., Langford, C. H., Langmuir., 2001, 17 (3), 897.
[10] Haque, S. A., Tachibana, Y., Willis, R. L., Moser, J. E., Grätzel, M., Klug, D. R., Durrant, J. R., J. Phys .Chem. B, 104 (2000) 538.
[11] Stock, N. L., Peller, J., Vinodgopal, K., Kamat, P. V., Environ. Sci. Techno, 34 (2000) 1747.
[12] Ghaedi, M., Hajati, S., Barazesh, B., Karimi, F., Ghezelbash, G., J. Ind. Eng. Chem, 19 (2013) 227.
[13] Turabik, M., J. Hazard. Mater., 2008, 158 (1), 52.
[14] Davoodi, S., Marahel, F., Ghaedi, M., Roosta, M., Hekmati Jah, A., Desalin. Water. Treat, 52 (2014) 7282.
[15] Sajjadi, S. H., Goharshadi, E. K., J. Environ. Chem. Eng, 5 (2017) 1096.
[16] Taghavia, S., Asgharia, AR., Tavasoli, A., J.Appli. chemis, 41 (2017) 129.
[17] A. Chamjangali, M., Bagherian, B., Bahramian, B., Fahimi Rad, B., Int. J. Environ. Sci. Technol, 12 (2015) 151.
[18] Lin, H.-F., Liao, S.-C., Hung, S.-W., J. Photochem. Photobiol. A, 174 (2005) 82.
[19] Andriantsiferana, C., Mohamed, E. F., Delmas, H., Environ. technol, 35 (2014) 355.
[20] Gözmen, B., Turabik, M., Hesenov, A., J. Hazard. Mater, 164 (2009) 1487.
[21] Kaur, S., Singh, V., J. Hazard. Mater, 141 (2007) 230.
[22] Sun, J., Wang, X., Sun, J., Sun, R., Sun, S., Qiao, L., J. Mol. Catal. A: Chem, 260 (2006) 241.