Multi-component one-pot synthesis of tetrasubstituted pyrroles by silica molybdic acid under solvent-free conditions

Document Type : Original Article


Department of chemistry, Yasouj university, Yasouj, Iran


A variety of tetrasubstituted pyrroles were synthesized by a one-pot three-component reaction of α-hydroxyketones (benzoin derivatives), malononitrile, and ammonium acetate in good yields under solvent-free conditions. In these reactions silica molybdic acid (SMA) was used as efficient, reusable, green and useful catalyst. The prepared silica molybdic acid (SMA) was characterized by X-ray fluorescence (XRF), powdered X-ray diffraction (XRD), and FT-IR spectroscopy. The attractive advantages of this method are the short reaction times, high yields of the products and reusability of the catalyst. All of these advantages make it a useful strategy for the preparation of various pyrrole derivatives simply by different substrates.


Main Subjects

[1] A. Corma and H. Garcia, Advanced Synthesis & Catalysis,. 348 (2006) 1391.
[2] P. Hu and M. Long, Applied Catalysis B: Environmental,181 (2016) 103.
[3] B. Karami.V. Ghashghaee and S. Khodabakhshi, Catalysis Communications, 21 (2012) 71.
[4] N. M. Rateb, S. M. Elnagdy and H. F. Zohdi, International Journal of Advanced Research, 2 (2014) 355.
[5] R. Radhakrishan, D. M. Do, S. Jaenicke, Y. Sasson and G. K. Chuah, ACS Catalysis, 1 (2011) 1631.
[6] M. L. Kantam, M. Roy, S. Roya, B. Sreedhara and R. L. De, Catalysis Communications, 9 (2008) 2226.
[8] A. D. Murkute, J. E. Jackson and D. J. Miller, Journal of Catalysis, 278 (2011) 189.
[9] M. Reisser and G. Maas, The Journal of Organic Chemistry, 69 (2008) 4913.
[10] E. Ghabraie, S. Balalaie, M. Bararjanian, H. R. Bijanzadeh and F. Rominger, Tetrahedron, 67 (2011) 5415.
[11] D. L. Boger, C. W. Boyce, M. A. Labrili, C. A. Sehon and Q. Lin, Journal of the American Chemical Society, 121 (1999) 54.
[12] M. S. T. Goncalves, Chemical Reviews, 109 (2009) 190.
[13] V. Estevez, M. Villacampa and J.C. Menendez, Chemical Society Reviews, 39 (2010) 4402.
[14] R.C. Arthur, T. J. Gupton, E. G. Kellogg, W. A. Yeudall,; C. M. Cabot, I. F. Newsham and A. D. Gewirtz, Biochemical Pharmacology,74 (2007) 981.
[15] F. Bellina and R. Rossi, Tetrahedron, 62 (2006) 7213.
[16] A. Alizadeh,; M. Babaki and N. Zohreh, Tetrahedron, 65 (2009) 1704.
[17] Q. Chong, X. Xin, C. Wang, F. Wu and B. Wan, Tetrahedron, 70 (2014) 490.
[18] H. Lee and B. H. Kim, Tetrahedron, 69 (2013) 6698.
[19] M. Farahi, F. Tamaddon, B. Karami and S. Pasdar, Tetrahedron Letters, 56 (2015) 1887.
[20] S. Sami, G. C. Nandi, R. Kumar and M. S. Singh, Tetrahedron Letters, 50 (2009) 7096.
[21] A. Domling and I. A. Ugi, Angewandte Chemie International Edition, 39(2000) 3168.
[22] C. Simon, T. Constantieux and J. Rodriguez, European Journal of Organic Chemistry, 2004 (2004) 4957.
[23] J.N. Sangshetti, N.D. Kokare and D.B. Shinde, Green Chemistry Letters and Reviews, 2 (2009) 233.
[24] M.N. Elinson, A.I. Ilovaisky, V.M. Merkulova, P.A. Belyakov and A.O. Chizhov, Tetrahedron, 66 (2010) 4043.
[25] K. Matsumoto, J.C. Kimb, H. Iidaa, H. Hamanaa, K. Kumamotoc, H. Kotsuki and G. Jenner, Helvetica Chimica Acta, 88 (2005) 1734.
[26] T. Brezesinski, J. Wang, S.H. Tolbert and B. Dunn, Nature Materials, 9 (2010) 146.
[27] M. Mousavi and H. Seyfi, Organic Chemistry Journal, 1 (2011) 17.
[28] M. Farahi, M. Davoodi and M. Tahmasebi, Tetrahedron Letter, 57 (2016)1582