Synthesys of the selective molecularly imprinted acrylic acid-based polymers and their applications in extraction of Catechin bioactive

Document Type : Original Article



Three-dimensional molecularly imprinted polymers (MIPs) network was formed by radical polymerization reaction in the present of the Catechin (+), Acrylic acid (AA), Trimethylolpropanetrimethacrylate (TRIM) (in ratio 1:20:80) as a template, functional monomer, cross-linker, respectively in Acetonitrile porogen. In extraction procedure by eluent, the template was removed and therefore nanoporous imprinted polymeric network was prepared which enable to adsorb Catechin bioactive, selectively. In this research, the molecularly imprinted polymers were synthesized and the binding capacity 304.0 mg/g as adsorbent of Catechin is reported. This polymer had the binding capacity 4.0 mg/g for Quercetin (similar structure of Catechin) that indicates high selectivity for the synthesized polymers. Evaluating of the polymers by adsorbtion-desorption with N2 gas, show that the specific surface area of the MIPs was 488.4 m2/g while it was 461.8 m2/g for the Non-Imprinted polymers (NIPs). Polymer paticles have been evaluated by Atomic Force Microscopy, too.