Synthesis and characterization of Nd- and Eu-doped cobalt oxide nanocrystals; investigation of synthesized nanoparticles in oxygen evaluation process

Document Type : Original Article


1 Department of Chemistry, Semnan University, Semnan 35351-19111, Iran

2 Department of Chemistry, Shahrood University of Technology


In this study, characterization of Co3O4 nanoparticle and Nd and Eu doped on the cobalt oxide were presented. Then, these nanoparticles were prepared by a combustion synthesis method for 8h at temperature 700 ºC using only complex Co(acac)3.Nanoparticles were characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), elemental maps analysis, energy-dispersive X-ray spectroscopy (EDS) and diffuse reflectance spectroscopy (DRS). The effect of neodymium and europium additive was also studied using cyclic voltammetry (CV) for the oxygen evolution reaction in an alkaline environment. Analysis of electrocatalytic activity for oxygen evolution reaction (OER) demonstrated that europium efficiency increased the oxygen evolution current. Meanwhile, neodymium has no effect on the properties of Co3O4 in this case.


Main Subjects

[1] K. M. Nam, Y. C. Choi, S. C. Jung, Y. I. Kim, M. R. Jo, S. H. Park, J. T. Park, Nanoscale. 4 (2012) 473.
[2] Y. Qi, N. Du, H. Zhang, X. Fan, Y. Yang, D.Yang, Nanoscale.4 (2012) 991.
 [3] Y. Sun, X. Hu, W. Luo, Y. Huang, J. Mater. Chem. 22 (2012) 13826.
 [4] L. Sun, H. Li, L. Ren, C. Hu, Solid State Sci. 11 (2009) 108.
 [5] N. A. Barakat, M. S. Khil, F. A. Sheikh, H. Y. Kim, J. Phys. Chem. C 112 (2008) 12225.
 [6] M. Salavati-Niasari, N. Mir, F. Davar, J. Phys. Chem. Solids. 70 (2009) 847.
[7] T. Mousavand, T. Naka, K. Sato, S. Ohara, M. Umetsu, S. Takami, T. Adschiri, Phys. Rev. B 79 (2009) 144411.
[8] T. He, D. Chen, X. Jiao, Y. Wang, Adv. Mater. 18 (2006) 1078.
[9] J. Park, X. Shen, G. Wang, Sens. Actuators B Chem. 136 (2009) 494.
 [10] D. Y. Kim, S. H. Ju, H. Y. Koo, S. K. Hong, Y. C. Kang, J. Alloys Compd. 417 (2006) 254.
 [11] Y. Xuan, R. Liu, Y. Q. Jia, Mater. Chem. Phys. 53 (1998) 256.
[12] N. N. Binitha, P. V. Suraja, Z. Yaakob, M. R. Resmi, P. P. Silija, J. sol-gel (2010) 466.
 [13] Y. Ni, X. Ge, Z. Zhang, H. Liu, Z. Zhu, Q. Ye, Mater. Res.Bull. 36 (2001) 2383.
 [14] Y. Jiang, Y. Wu, B. Xie, Y. Xie, Y. Qian, Mater. Chem. Phys. 74 (2002) 234.
 [15] H. Shao, Y. Huang, H. Lee, Y. J. Suh, C. O. Kim, Curr. Appl. Phys. 6 (2006) e195.
 [16] R. Garavaglia, C. M. Mari, S. Trasatti, .23 (1984) 41.
[17] T. N. Ramesh, J. Solid State Chem. 183 (2010) 1433.
[18] Q. Yuanchun, Z. Yanbao, W. Zhishen, Mater. Chem. Phys. 110 (2008) 457.
[19] G. Laugel, J. Arichi, H. Guerba, M. Moliere, A. Kiennemann, F. Garin, B. Louis, Catal. Lett.125 (2008) 14.
[20] Y. Qu, D. J. Masiel, N. N. Cheng, A. M. Sutherland, J. D. Carter, N. D. Browning, T. Guo, J. Colloid. Interface Sci. 321 (2008) 251.
[21] R. N. Singh, J. F. Koenig, G. Poillerat, P. Chartier, J.electroanal. chem.interfacial electrochem.314 (1991) 241.
[22] C. Cantalini, M. Post, D. Buso, M. Guglielmi, A. Martucci, Sens. Actuators B Chem.108 (2005) 184.
[23] W. Y. Li, L. N. Xu, J. Chen, Adv.Funct.Mater. 15 (2005) 851.
[24] H. Kim, D. W. Park, H. C. Woo, J. S. Chung, Applied Catalysis B: Environmental 19 (1998) 233.
[25] W. Y. Li, L. N. Xu, J. Chen, Adv. Funct.Mater.15 (2005) 851.
[26] T. Sugimoto, E. Matijević, J.Inorg. Nucl. Chem.41 (1979) 165.
[27] P. L. S. G. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nature 407 (2000) 496.
[28] Y. Shan, L.Gao, Mater. Chem. Phys. 103 (2007) 206.
[29] B. Wang, Y. Wang, J. Park, H. Ahn, G. Wang, J. Alloys Compd. 509 (2011) 7778.
[30] T. Maruyama, S. Arai, J. Electronchem Soc. 143 (1996) 1383.
[31] Q. Yuanchun, Z. Yanbao, W. Zhishen, Mater. Chem. Phys. 110 (2008) 457.
[32] S. Noguchi, M. Mizuhashi, Thin Solid Films 77 (1981) 99.
 [33] S. Lian, E. Wang, L.Gao, L. Xu, Mater. Lett. 61 (2007) 3893.
[34] Y. Wang, C. M. Yang, W. Schmidt, B. Spliethoff, E. Bill, F. Schüth, Adv. Mater. 17 (2005) 53.
[35] C. Liu, B. Zou, A. J. Rondinone, Z. J. Zhang, J. Am.Chem. Soc.123 (2001) 4344.
[36] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mat.13 (2001) 113.
[37] B. Kim, S. L. Tripp, A. Wei, J. Am.Chem. Soc.123 (2001) 7955.
[38] B. Liu, H. C. Zeng, J.American ChemSoci. 126 (2004) 8124.
[39] J. J. Teo, Y. Chang, H. C. Zeng, Langmuir 22 (2006) 7369.
[40] W. E. Spear, D. S. Tannhauser, Physical Review B 7 (1973) 831.
[41] H. K. Lin, H. C. Chiu, H. C. Tsai, S. H. Chien, C. B. Wang, Catal.lett.88 (2003) 169.
[42] Gadsden, J. A. Infrared spectra of minerals and related inorganic compounds. Butterworths, 1975.
[43] Y. Chen, Y. Zhang, S. Fu, Mater. Lett. 61 (2007) 701.
[44] T. Ozkaya, A. Baykal, M. S. Toprak, Y. Koseoğlu, Z. Durmuş, J. Magn. Magn. Mater. 321 (2009) 2145.
[45] K. T. Wong, J. M. Lehn, S. M. Peng, G. H. Lee, Chem Communications. 22 (2000) 2259.
[46] J. A. Ramsden, W. Weng, A. M. Arif, J. A. Gladysz, J. Am.Chem. Soc. 114 (1992) 5890.
[47] W. Weng, J. A. Ramsden, A. M. Arif, J. A. Gladysz, J. Am.Chem. Soc. 115 (1993) 3824.
[48] N. Le Narvor, L. Toupet, C. Lapinte, J. Am.Chem. Soc. 117 (1995) 7129.