Synthesis and characterization of the composite of TiO2/Zeolite by sol-gel method and evaluation of its photocatalytic activity in the degradation of azo dyes from aqueous solutions

Document Type : Original Article


1 Chemistry,damghan university

2 School of Chemistry, Damghan University, Damghan, Iran


In this research, the composite of TiO2/Zeolite as a cheap and effective photocatalyst was prepared for the removal of methyl orange dye in water solution. At first, TiO2 solution was successfully synthesized and then combined with appropriate amount of Clinopatilolite zeolite. The prepared samples were calcined at different temperatures. The synthesized photocatalysts were characterized by, X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and Fourier transform infrared (FTIR). The effect of the calcination temperatures and the amount of zeolite in composite of the as-synthesized photocatalysts on crystal structure, morphology and photocatalytic degradation of methyl orange dye solution were studied. The results of the experiments showed that combining of zeolite with TiO2 induced the enhancement of photocatalytic activity and optimal zeolite content was obtained about 0.1 g (0.33 wt.% ). Also calcination temperature has a great influence on the photocatalytic activity of the synthesized samples. The optimal calcination temperature was obtained 300⁰C. The composite of TiO2/Zeolite powders obtained from the optimum condition showed uniform spherical shape, anatase crystalline structure and few agglomerates. The methyl orange was removed more than 96% within 60 min of the process with optimum calcinations temperature and zeolite content.


Main Subjects

[1] M. M. Tauber, G. M. Gubitz and A. Rehorek, Bioresource Technology, 99 (2008) 4213.
]2[ سیدی، سیده رضوانه؛ دانشگاه سمنان، مجله علمی پژوهشی شیمی کاربردی، شماره 21 (1390)، ص 61.
[3] R. Darvishi Cheshmeh Soltani, S. Jorfi, H. Ramezani and S. Purfadakari, Ultrasonics Sonochemistry, 28 (2016) 69.
[4] M. Roushani, M. Mavaei and H. R. Rajabi, Journal of Molecular Catalysis A: Chemical, 409 (2015) 102.
[5] A. Nezamzadeh-Ejhieh and N. Moazzeni, Journal of Industrial and Engineering, 19 (2013) 1433.
[6] M. Safari, M. Nikazar and M. Dadvar, Journal of Industrial and Engineering, 19 (2013) 1697.
[7] A. Lopes, S. Martins, A. Morao, M. Magrinho and I. Goncalves, Portugaliae Electrochimica Acta, 22 (2004) 279.
[8] R. L. Singh, P. K. Singh and R. P. Singh, International Biodeterioration & Biodegradation, 104 (2015) 21.
[9] M. Rohani Moghadam, N. Nasirizadeh, Z. Dashti and E. Babanezhad, International Journal of Industrial Chemistry, 4 (2013) 19.
]10[ عبدی، سارا؛ نصیری، مسعود؛ حسن خانی، محمد؛ دانشگاه سمنان؛ مجله علمی پژوهشی شیمی کاربردی، شماره 33 (1393) ص 65.
]11[ شریفات، سهام؛ ذوالقرنین، حسین؛ حمیدی فلاحی، عبدالقادر؛ دانشگاه سمنان، مجله علمی پژوهشی شیمی کاربردی، شماره 33 (1393) ص 103.
[12] M. M. Aghayizadeh, N. Nasirizadeh, S. M. Bidoki and M. E. Yazdanshenas, International Journal of Electrochemical Science, 8 (2013) 8848.
[13] A. R. Amani-Ghadim, S. Aber, A. Olad and H. Ashassi-Sorkhabi, Chemical Engineering and Processing: Process Intensification, 64 (2013) 68.
[14] S. Merouani, O. Hamdaoui, Z. Boutamine, Y. Rezgui and M. Guemini, Ultrasonics Sonochemistry, 28 (2016) 382.
[15] M. A. Radi, N. Nasirizadeh, M. Rohani-Moghadam and M. Dehghani, Ultrasonics Sonochemistry, 27 (2015) 609.
]16[ حقیقی اصل، علی؛ احمدپور، امین؛ فلاح، نرگس، دانشگاه سمنان؛ مجله علمی پژوهشی شیمی کاربردی، شماره 42 (1396) ص 253.
[17] A. Nazari, M. Montazer, N. Nasirizadeh and B. Namiranian, Journal of Engineered Fibers and Fabrics, 8 (2013) 114.
[18] S. Watson, D. Beydoun, J. Scott and R. Amal, J. of Nanoparticle Research 6 (2004) 193.
[19] D. Kanakaraju, J. Kockler, C. A. Motti, B. D. Glass, Applied Catalysis B: Environmental, 45 (2015) 166.
[20] F. Li, Y. Jiang, L. Yu, Z. Yang, T. Hou, S. Sun, Applied Surface Science, 252 (2005) 1410.
[21] M. Huang, C. Xu, Z. Wu, Y. Huang, J. Lin, J. Wu, Dyes and Pigments, 77 (2008) 327.
[22] J. Tian, J. Wang, J. Dai, X. Wang, Y. Yin, Surface & Coatings Technology, 204 (2009) 723.
[23] A. Ates and G. Akgül, Powder Technology, 287 (2016) 285.
[24] A. Ates and C. Hardacre, Advances in Colloid and Interface Science, 372 (2012) 130.
[25] J. Krysa, M. Keppert, J. Jirkovsky, V. Stengl and J. Subrt, Materials Chemistry and Physics. 86 (2004) 333.
[26] Y. Kim and M. Yoon, Journal of Molecular Catalysis A: Chemical. 168 (2001) 257.
[27] H. Chen, A. Matsumoto, N. Nishimiya and K. Tsutsumi, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 157 (1999) 295.
[28] Q. Sun, X. Hu, S. Zheng, Z. Sun, S. Liu and H. Li, Powder Technology. doi: 10.1016/j.powtec.2014.12.052.
[29] L. Ma, J. Li, H. Arandiyan, W. Shi, C. Liu and L. Fu, Catalysis Today. 184 (2012) 145.
[30] P. Thuadaij, K. Pimraksa and A. Nuntiya, Journal of Basic and Applied Sciences. 6 (2012) 194.
[31] A. Tadjarodi, M. Haghverdi and V. Mohammadi, Materials Research Bulletin.47 (2012) 2584.
[32] T. Perraki and A. Orfanoudaki, Applied Clay Science. 25 (2004) 9.
[33] E.H. De Faria, A. Lemes Marcal, E. Jose Nassar and K. Jorge Ciuffi, Materials Research. 10 (2007) 413.
[34] M.R. Eskandarian, M. Fazli and M.H. Rasoulifard, Applied Catalysis B: Environmental, 183 (2016), 407.
[35] L. Sanly; L. May and A. Rose, Chemical Engineering Science, 105 (2014) 46.
[36] N. Setthaya, P. Chindaprasirt, S. Yin, K. Pimraksa, Powder Technology, (2017),doi:10.1016/j.powtec.2017.01.014.
[37] L. Guishui, C. Lijun, Z. Bing, L. Yi, Materials Letters, 168 (2016) 143.