Synthesis and Characterization of CuO nanoparticles in porous clay heterostructure and study of its antibacterial properties

Document Type : Original Article


1 Department of chemistry, Faculty of Science, University of Guilan, Rasht, Iran

2 رشت، دانشگاه گیلان، دانشکده علوم، گروه شیمی


This study reports on the preparation and characterization of porous clay heterostructure (PCH) as a high-surface area support for CuO nanoparticles based antibacterial activity for Gram-positive and Gram-negative bacteria. CuO nanoparticles were incorporated in PCH by thermal decomposition method and characterized by diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), nitrogen adsorption-desorption measurements (BET) and transmission electron microscopy (TEM), The TEM results showed that nanoparticles are nearly spherical and particles size in the range of less than 10 nm. The powder X-ray diffraction indicated that PCH contained both MMT clay and MCM-41 and have located in the clay interlayers speaces. The diffuse reflectance spectra demonstrated the presence of CuO, Cu2O and Cu nanoparticles in PCH. The nanocomposite (CuO-PCH) was used for antibacterial testing. The antibacterial activity of CuO-PCH nanocomposite was tested against Gram-positive and Gram-negative bacteria. The nanocomposite showed efficient bacterial effect against Gram-positive bacteria. The mechanism of antibacterial activity of CuO-PCH nanocomposite was discussed.


Main Subjects

[1] J. Xie, H. Wang, M. Duan, L. Zhang, Appl. Surf. Sci. 257 (2011) 6358.
]2[ جواهریان، محمد; کاظمی، فواد; رجب کلانترزاده، محمد; معتمدی، حسین، مجله شیمی کاربردی دانشگاه سمنان، شماره 42، (1396) ص 9.
]3[ علی عابدی، فردین; طائی، معصومه، مجله شیمی کاربردی دانشگاه سمنان، شماره 42، (1396) ص 35.
[4] F. Petronella, A. Truppi, C. Ingrosso, T. Placido, M. Striccoli, M.L. Curri, A. Agostiano, R. Comparelli, Catal. Today 281 (2017) 29.
[5] M. Yin, F. Wang, H. Fan, L. Xu, S. Liu, J. Alloys Compd. 672 (2016) 3749.
[6] R. Gusain, P. Kumar, O.P. Sharma, S.L. Jain, O. P. Khatri, Appl. Catal. B 181 (2016) 352.
[7] K. Mageshwari, D. Nataraj, T. Pal, R. Sathyamoorthy, J. Park, J. Alloys Compd. 625 (2015) 362.
[8] B. Fang, Y. Xing, A. Bonakdarpour, S. Zhang, D. P. Wilkinson, ACS Sustainable Chem. Eng. 3 (2015) 2381.

[9] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, T-W. Chu, D.H. Olson, E.W. J. Am. Chem. Soc. 114 (1992) 10834.

[10] T.J.  Pinnavaia, US patent 1998. (US 5834391).

[11] A. Galarneau, A. Barodawalla, T.J. Pinnavaia, Nature 374 (1995) 529.

[12] J.A. Cecilia, A. Arango-Díaz, F. Franco, J. Jiménez-Jiménez, L. Storaro, E. Moretti, E. Rodríguez-Castellón, Catal. Today 253 (2015) 126.
[13] R. M.T. Sanchez, M.J. Genet, E.M. Gaigneaux, M. dos Santos Afonso, S. Yunes, Appl. Clay Sci. 53 (2011) 366.
[14] M.S. Whittingham, Solid State Ionics, 25 (1987) 295.
[15] S. Sohrabnezhad, M.M. Moghaddam, T. Salavatiyan, Spectrochimica Acta A 125 (2014) 73.
[16] S. Sohrabnezhad, A. Valipour, Spectrochimica Acta A 114 (2013) 298.
[17] M.C. Chao, H.P. Lin, C. Y. Mou, B.W. Cheng, C.F. Cheng, Catal. Today, 97 (2004) 81.
[18] P. Zhao, L. Zhu, Environ. Sci. Eng. 10 (2016) 219.
[19] N. Khanikar, K.G. Bhattacharyya, J. Chem. Eng. 233 (2013) 88.
[20] N.Sarier, E. Onder, S. Ersoy, Colloids Surf. A 371 (2011) 40.
[21] B. Tyagi, C.D. Chudasama, R.V. Jasra, R.V. Spectrochim. Acta A 64 (2006) 273.
[22] M.R. Lemus, Vitae , 18 (2011) 325