Synthesize and Characterization of ZnO/-Al2O3 Nanocomposite using Liquid Phase Method and Investigation of H2S Sorption

Document Type : Original Article


1 Faculty of Chemical Engineering, Oil and Gas, Semnan University, Semnan, Iran

2 Iranian Scientific and Industrial Research Organization, Tehran, Iran


In this investigation, the ZnO/g-Al2O3 Nanocomposite synthesized and characterized for removal and sorption of hydrogen sulphide. Firstly, gamma alumina support was synthesized using precipitation method with ammonium carbonate and then, zinc oxide was impregnated on support. The nanocomposite were extensively characterized before and after sorption process in order to determine the structural effects with XRD, BET, FT-IR, FE-SEM and EDS analysis. The BET result was shown that the 320 square meters specific area per grams of absorber. Also, FE-SEM images showed that the mean size of powders was about 7 nm. Gas flow of 200 ppm hydrogen sulphide in equilibrium with nitrogen inter to adsorption column and sorption process was done. At optimum condition of adsorption operational parameters, the adsorption capacity was 150.43 mg per gram of absorber. The variation of composite morphology and also XRD phases at before and after sorption showed that this sorption is chemically sorption. Also, the XRD phases in gamma alumina showed that the hydrogen sulphide removal was physically sorption.

[1] M. A. Al-Daous, S. A. Ali, Fuel, 97 (2012) 662.
[2] Y. Elsayed, M. Seredych, A. Dallas, T. J. Bandosz, Chemical Engineering Journal, 155, (2009) 594.
[3] X. Zhang, G. Dou, Z. Wang, L. Li, Y. Wang, H. Wang and et al., Journal of hazardous materials, 260 ( 2013) 104.
[4] Z. H. Huang, G. Liu, F. Kang, ACS applied materials & interfaces, 4 ( 2012) 4942.
[5] J. Shangguan, Y. Zhao, H. Fan, L. Liang, F. Shen, M. Miao, Fuel, 108 ( 2013) 80.
[6] J. P. Wakker, A. W. Gerritsen, J. A. Moulijn, Industrial & Engineering Chemistry Research, 32 (1993) 139.
[7] F. Yaripour, Z. Shariatinia, S. Sahebdelfar, Fuel Processing Technology, 139 2015 40.
[8] M. Mureddu, I. Ferino, A. Musinu, A. Ardu, and et al., Journal of Materials Chemistry A, 2 (2014), 19396.
[9] H. Tajizadegan, M. Rashidzadeh, M. Jafari, R. Ebrahimi-Kahrizsangi, Chinese Chemical Letters, 24 (2013) 167.
[10] O. Karvan, H. Atakül, Fuel Processing Technology, 89 (2008) 908.
[11] A. Srivastav, V. C. Srivastava, 170 ( 2009) 1133.
[12] P. P. Dhage, Promoted ZnO Sorbents for Wide Temperature Range H2S/COS Removal for Applications in Fuel Cells, Auburn University, 2011, phd thesis.
[13] G. Liu, Z.H. Huang, Journal of hazardous materials, 215 ( 2012) 166.
[14] H. Yang, D. R. Cahela, B. J. Tatarchuk, Chemical Engineering Science, 63 (2008) 2707.
[15] R. Hong, J. Li, L. Chen, D. Liu, and et al., Powder Technology, 189 ( 2009) 426.
[16] O. Mabayoje, M. Seredych, T. J. Bandosz, ACS applied materials & interfaces, 4 (2012), 3316.
[17] S. Fessi, A. Mamede, A. Ghorbel, A. Rives, Catalysis Communications, 27 (2012) 109.
[18] F. Li, J. Wei, Y. Yang, G. H. Yang, T. Lei, Applied Mechanics and Materials, 475 (2014) 1329.
[19] X. Wang, T. Sun, J. Yang, L. Zhao, J. Jia, Chemical Engineering Journal, 142 (2008) 48.
[20] Y. J. Lee, N.-K. Park, G. B. Han, and etal., Current Applied Physics,  8 (2008) 746.
[21] J. Lee, H. Yoon, U. Chae, H. Park, and et al., Journal- Korean Institute of Chemical Engineering, 43 (2005) 503.
[22] H. J. Youn, J. W. Jang, I. T. Kim, K. S. Hong, Journal of colloid and interface science, 211 (1999) 110.
[23] J. Li, Y. Pan, C. Xiang, Q. Ge, J. Guo, Ceramics International, 32 (2006) 587.
[24] Y. K. Park, E. H. Tadd, M. Zubris, R. Tannenbaum, Materials Research Bulletin, 40 (2005) 1506.
[25] Y. Rozita, R. Brydson, A. J. Scott, Journal of Physics: Conference Series, 241 (2010) 012096.
[26] S. Lan, N. Guo, L. Liu, X. Wu, L. Li, S. Gan, Applied Surface Science, 283 (2013) pp. 1032.
[27] A. L. Delgado, L. Fillali, J. A. Jiménez, S. L. Andrés, Journal of sol-gel science and technology, 64 (2012) 162.
[28] A. Srivastav, V. C. Srivastava, Journal of hazardous materials, 170 (2009) 1133.
[29] S. Wang, X. Li, S. Wang, Y. Li, Y. Zhai, Materials Letters, 62 (2008) 3552.
[30] D. Montes, E. Tocuyo, E. González, and, Microporous and Mesoporous Materials, 168 (2013) 111.
[33] F. Z. Karizi, V. Safarifard, S. K. Khani, A. Morsali, Ultrasonics Sonochemistry, 23 (2015) 238.
[34] M.A. Mousa, W.A.A. Bayoumy, M. Khairy, Materials Research Bulletin, 48 (2013) 4576.
[35] F. Laatar, M. Hassen, C. Amri, Journal of Luminescence, 178 (2016) 13.
[36] C. Liewhiran, S. Seraphin, and S. Phanichphant,  Current Applied Physics, 6 (2006) 499.
[37] I. I. Novochinskii, C. Song, X. Ma, and et. al., Energy & Fuels, 18 (2004) 576.
[38] R. Habibi, A. M. Rashidi, J. T. Daryan, Applied surface science, 257 (2010) 434.
[39] C.R. Apesteguía, S.M. Trevizán, T.F. Garetto, and et al., Reaction Kinetics and Catalysis Letters 20 (1982) 1.