Effect of charge on the structural properties of hydrogen doped ZnO

Document Type : Original Article

Authors

1 Crystal Growth Research Laboratory, Faculty of Physics, Semnan University, Semnan, Iran

2 School of Chemistry, Semnan University, Semnan, Iran

3 Superconductivity Research Laboratory, Faculty of Physics, University of Tehran, Tehran, Iran

Abstract

Effect of charge on the structural properties of Wurtzite ZnO doped with interstitial hydrogen was investigated using Density Function Theory. Calculation performed using Quantum Espresso package with Generalized Gradient Approximation (GGA). Calculations for formation energy showed that H+ is more stable than H0 and H- doping in this structure. Charge density calculation and Bader analysis showed that for all three H+, H0 and H- states hydrogen due to its higher electronegativity in compared with Zn atoms, joins to oxygen and increases its charge and repulses zinc atom. Hydrogen doping affects on volume of supercells due to locating in space charge density, therefore cell parameters and volume of supercell decrease in H+ state, while these values increase for H0 and H- states. 

Keywords


[1] P. Gori, M. Rakel, C. Cobet, Phys. Rev. B, 81 (2010) 125207.
 
[2] C. G.Van de Walle, Phys. Rev. Lett., 85, No. 5 (2000) 1012.
 
[3] A. Janotti, C.  G Van de Walle, Rep. Prog. Phys, 72 (2009)1.
 
[4] A. Kronenberger, A. Polity, D. M. Hofmann, B. K. Meyer, Phys. Rev. B, 86 (2012) 115334.
 
[5] Y.H. Kim, S. Zh. Karazhanov, W.M. Kim, Phys. Status Solidi B, 248, No. 7 (2011) 1702.
 
[6] L. Chen, W. Chen, J. Wang, F. Chau-Nan Hong, Appl. Phys. Lett., 85, No. 23 (2004) 5628.
 
[7] P. F. Cia, J. B. You, X. W. Zhang, J. J. Dong, X. L. Yang, Z. G. Yin, and N. F. Chen, J. Appl. Phys., 105 (2009) 083713.
 
[8] I. Takahashi and Y. Hayashi, Jap. J. of Appl. Phys. 54 (2015) 01AD07.
 
[9] D. Gaspar, L. Pereira, K. Gehrke, B. Galler, E. Fortunato, and R. Martins, Sol. Energy Mater. Sol. Cells 163 (2017) 255.
 
[10] B. Macco, H. C.M. Knoops, M. A. Verheijen, W. Beyer, M. Creatore, and W. M. M. Kessels, Sol. Energy Mater. Sol. Cells, Accepted 17 May 2017.
 
[11] S. G. Koch, E. V. Lavrov, and J. Weber, Phys. Rev. B89 (2014) 235203.
 
[12] S. Zh. Karazhanov and A. G. Ulyashin, Phys. Rev. B, 78 (2008) 085213.
[13] F.Herklotz, E. V. Lavrov, J.Weber, Physica B, 404 (2009) 4349.
[14] F.T. Kong, H.J. Tao, H.R. Gong, J .of Hydr. Ener., 38 (2013)5974.
[15] X. Li, S. Limpijumnong. W. Q. Tian, H. B. Sun, S. B. Zhang, Phys. Rev. B., 78 (2008) 113203.
[16] F. Bustanafruz, M. Fazli, M. Mohamadizade, M. J. Tafreshi, Opt Quant Electron, 48 (2016) 297.
[17] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys, Cond. Mat., 21 (2009) 395502.
[18] Y. R. Park, J. Kim, and Y.S. Kim, ApplSurfSci., 255 (2009) 9010.
[19] X. Ma, Y. Wu, Y. Lv, and Y. Zhu, J. Phys. Chem. C, 117 (2013) 26029.