A Comparative Study on Photodegradation Kinetic of Tetracycline Using Visible light Sensitized ZnS and Cu-loaded ZnS Nano Particles

Document Type : Original Article


1 Islamic Azad University, Science and Research Branch

2 Department of Chemistry, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran


Sensitized ZnS and Cu-loaded ZnS nanoparticles have been synthesized by chemical precipitation method using anthocyanin as the capping agent and sensitizer. X-ray diffraction, transmission electron microscopy, UV visible spectrophotometer methods were used for the characterization of nanoparticles. Photocatalytic activities of sensitized ZnS and Cu-loaded ZnS were compared in degradation of tetracycline in aqueous solution under visible light irradiation. The progress of the reaction was monitored spectrophotometrically. The different parameters affecting on the photocatalytic reaction such as amount of semiconductor, the initial tetracycline (TC) concentration, the pH of solution, Influence of Cu content and the photocatalytic degradation kinetics of TC were studied. Sensitized Cu-loaded ZnS nanoparticles exhibit high photocatalytic activity during the mineralization of tetracycline under visible light due to decrease of recombination rate of electron–hole pairs. More than 90 % of tetracycline solution degraded with sensitized Cu-loaded ZnS in less than 90 min while Sensitized ZnS was degrading 80 percent within 5 hours.


Main Subjects

[1] S.E. Emad and M. Chaudhur, Desalination, 272 (2011) 218.
[2] S.E. Emad and M. Chaudhuri, Desalination, 256 (2010) 43.
]3[ سید دراجی، میرسعید; لطفی حیائی، خلیل; امانی قدیم، علیرضا، مجله شیمی کاربردی، شماره 44 (1396) 55.
]4[ نوزاد گلی کند، احمد; نوری، آزیتا; فیروزی، مهزاد، مجله شیمی کاربردی، شماره 42 (1396) 23.
[5] R. Chauhan, A. Kumar and R.P. Chaudhary, Journal of Luminescence, 145(2014) 6.
[6] Y. Chen, G-F. Huang, W-Q. Huang, B.S. Zou and A.L. Pan, Applied Physics, 108 (2012) 895.
[7] P. Singla, O.P. Pandey and K. Singh, International Journal of Environmental Science and Technology, 13 (2016) 849.
[8] P. Sivakumar, G.K.G. Kumar and S. Renganathan, Journal of Nanostructure in Chemistry, 4 (2014)107.
[9] U.T.D. Thuy, N.Q. Liema, C.M.A. Parlett, G.M. Lalev and  K. Wilson, Catalysis Communications , 44 (2014) 62.
[10] J. Zhang, J.G. Yu, Y.M. Zhang, Q. Li and J.R. Gong, Nano Letters , 11(2011) 4774.
[11] F. Chen, W. Zou, W. Qu and  J. Zhang, Catalysis Communications , 10 (2009)1510.
[12] W. Zhiyu, C. Haifeng, T. Peisong, M. Weiping, Z. Fuan, Q. Guodong and F. Xianping, Colloids and Surfaces A, 289 (2006) 207.
[13] H. R. Pouretedal and M. H. Keshavarz, International Journal of the Physical Sciences, 6 (2011) 6268
[14] R.Chauhan, A.Kumar, R.P. Chaudhary, Journal of Luminescence; 145 (2014) 6.
[15] L.S. Vanini, T.A. Hirata, A. Kwiatkowski and E. Clemente, Brazilian Journal of Food Technology, 12 (2009) 213.
[16] M. Ahadi, M. Saber Tehrani, P. Aberoomand Azar and S.W. Husain, International Journal of Environmental Science and Technology, 13(2016) 2797.
[17] N. ElmiFard, R. Fazaeli and R. Ghiasi, Chemical Engineering & Technology, 39 (2016) 149
[18] R. Daghrir, P. Drogui and M.A.E. Khakani, Electrochimica Acta, 43 (2012) 1354.
[19] M. Ghanbarian, R. Nabizadeh, A.H. Mahvi, S. Nasseri and K. Naddafi, Iranian Journal of Environmental Health Science & Engineering, 8 (2011) 309.
[20] M. Salehi, H. Hashemipour and M. Mirzaee, American Journal of Environmental Engineering, 2 (2012) 1.
[21] M.A. Behnajady, N. Modirshahla, M. Shokri and B. Rad, Global NEST Journal, 10 (2008)1.
[22] N. Daneshvar, D. Salari and A.R. Khataee, Journal of Photochemistry and Photobiology A, 157 (2003) 111.