Synthesis, characterization and antibacterial property of Ag2O/Large Mordenite nanocomposite

Document Type : Original Article


1 Department of Chemistry,Faculty of Science, Rasht Branch, Islamic Azad University, Rasht, Iran.

2 Department of Chemistry, Faculty of Science, Rasht Branch, Islamic Azad University, Rasht, Iran

3 Department of Microbiology, Rasht Branch, Islamic Azad University, Rasht, Iran


Zeolites are crystalline aluminosilicates with a well-defined microporous structure. Depending on their structure and composition, zeolites are widely used as sorbents, detergents, ion-exchangers, heterogeneous catalyst and especially as host for metal oxide or metal nanostructures. Silver oxide (Ag2O), an intrinsic p-type semiconductor with band gap1.46eV, has been widely investigated as an essential material for potential practical applications in antibacterial material, photocatalysis, silver-oxide batteries, and gas sensing. In this study, the spherical structure of Ag2O NPs was synthesized in the Large Mordenite matrix. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and Scanning electron microscopy (SEM). TEM images show small spherical nanoparticles belong to Ag2O nanoparticles with mean diameter 2–14 nm. The antibacterial activity of Ag2O/Large Mordenite nanocomposite was tested against Gram- negative (E. coli) and Gram- positive (S. aureus) bacteria and compared with standard antibiotics.


Main Subjects

]1[ جواهریان، محمد; کاظمی، فواد; رجب کلانترزاده، محمد; معتمدی، حسین، مجله شیمی کاربردی دانشگاه سمنان، شماره 42، (1396) ص 9.
]2[ علی عابدی، فردین; طائی، معصومه، مجله شیمی کاربردی دانشگاه سمنان، شماره 42، (1396) ص 35.
 [3] A. Pourahmad, Arabian J. Chem., 7 (2014) 788.
[4] X. Chen, Z. Guo, W. H. Xu, H. B. Yao, M. Q. Li, and J. H. Liu, Adv. Funct. Mater., 21 (2011) 2049.
[5] D. R. Monteiro, L. F. Gorup, A. S. Takamiya, A. C. Ruvollo-Filho, E. R. de Camargo,and D. B. Barbosa, Int J Antimicrob Agents., 34 (2009) 103.
[6] R. W.-Y. Sun, R. Chen, N. P.-Y. Chung, C.-M. Ho, C.-L. S. Lin, and C.-M. Che, Chem. Commun., 40 (2005) 505.
[7] M. Z. Hu, and C. E. Easterly, Mater. Sci. Eng., C, 29 (2009) 726.
[8] V. K. Sharma, R. A. Yngard, and Y. Lin, Adv Colloid Interface Sci, 145 (2009) 83.
[9] D. R. Bhumkar, H. M. Joshi, M. Sastry, and V. B. Pokharkar, Pharm Res, 24 (2007) 1415.
[10] T. M. Tolaymat, A. M. El Badawy, A. M. Genaidy, K. G. Scheckel, T. P. Luxton, and M., Suidan, Sci. Total Environ., 408 (2010) 999.
[11] S. Kittler, C. Greulich, J. Diendorf, M. Koller, and M. Epple, Chem. Mater., 22 (2010) 4548.
[12] D. Lozano-Castello, W. Zhu, A. Linares-Solano, F. Kapteijn, and J.A. Moulijn, Microporous Mesoporous Mater., 92 (2006) 145.
[13] Kyle T. Sullivan, Chunwei Wu, Nicholas W. Piekiel, Karen Gaskell, and Michael R. Zachariah, Combust. Flame, 160 (2013) 438.
[14] Lei Zhang, Adri N.C. van Laak, Petra E. de Jongh, Krijn P. de Jong.  Microporous Mesoporous Mater., 126 (2009) 115.
[15] I. Halaciuga, S. LaPlante, and D. V. Goia, J. Colloid Interface Sci., 354 (2011) 620.
[16] Y. Tou, L. Wan, Sh. Zhang, and D. Xu, Mater. Res. Bull., 45 (2010) 1850.
[17] N. Salam, B. Banerjee, A. S. Roy, P. Mondal, S. Roy, A. Bhaumik, and SK. Manirul Islam. Appl. Catal., A, 477 (2014) 184.
[18] M.M. Mohamed, T.M. Salama, I. Othman, and I.A. Ellah, Micropor. Mesopor.Mater. 84 (2005) 84.
[19] J.C. Jansen, F.J. Gaag, and H. Bekkum, Zeolites, 4 (1984) 369.
[20] M. AlyHisham, E. Moustafa, A. Ehab, A. rahman. Adv. Powder Technol., 23 (2012) 757.
[21] M. M. Rahman, S. B. Khan, A. Jamal, M. Faisal, and A. M. Asiri. Chem. Eng. J., 192 (2012) 122.