Synthesis of sulfacetamide and pKa calculation of its derivatives using ab initio methods

Document Type : Original Article

Authors

1 Department of chemistry, faculty of Science, Yazd University, Yazd, Iran

2 Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran

Abstract

Sulfonamides are a class of pharmaceutical compounds included –SO2NH– group that show a variety of biological activities. Sulfacetamide is an N-acyl sulfonamide that has broad-spectrum antibiotic effects.
The acid-base properties of these compounds are believed to play an important role in their biological activities. Therefore, calculation of its acidic-basicity has a specific importance in predicting and justifying the pharmaceutical properties of this compound. In this study, the synthesis of sulfacetamide has been carried out from a new multi-steps method in presence of heterogeneous catalyst of nano zinc oxide and homogeneous base catalyst of magnesium hydroxide. The stage and overall yields are better and their reaction time is less than previous procedures. Using heterogeneous catalyst, recoverable nano zinc oxide and magnesium hydroxide in solvent-free condition is a new procedure for better synthesis of this compound. Also in this work, acidic-basicity of sulfacetamide and its derivatives have been studied using high level ab initio calculations. The calculated values have been found in good agreement with experimental data. Therefore, predictions of pharmaceutical properties of these compounds are possible.

Keywords

Main Subjects


[1] M.A. Weidner‐Wells, M.J. Macielag, Antibacterial Agents, Sulfonamides, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley and Sons (2003).
[2] A. Mastrolorenzo, C.T. Supuran, Met.-Based Drugs, 7 (2000) 49.
[3] A.R. Massah, H. Adibi, R. Khodarahmi, R. Abiri, M.B. Majnooni, S. Shahidi, B. Asadi, M. Mehrabi, M.A. Zolfigol, Biorg. Med. Chem., 16 (2008) 5465.
[4] F. Tamaddon, M.R. Sabeti, A.A. Jafari, F. Tirgir, E. Keshavarz, J. Mol. Catal. A: Chem., 351 (2011) 41.
[5] M. J. Frisch, et al, Gaussian 09, Revision A. 02, Gaussian, Inc., Wallingford, CT, (2009).
[6] A.G. Baboul, L.A. Curtiss, P.C. Redfern, K. Raghavachari, J. Chem. Phys., 110 (1999) 7650.
[7] L.A. Curtiss, P.C. Redfern, K. Raghavachari, V. Rassolov, J.A. Pople, J. Chem. Phys., 110 (1999) 4703.
[8] V. Barone, M. Cossi, J. Phys. Chem. A, 102 (1998) 1995.
[9] M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem., 24 (2003) 669.
]10[ رحیمی اهر، لیلی; رحیمی اهر، زهره، مجله شیمی کاربردی، شماره 40 (1395) ص 23.
[11] G. Schüürmann, M. Cossi, V. Barone, J. Tomasi, J. Phys. Chem. A, 102 (1998) 6706.
[12] C.O. da Silva, E.C. da Silva, M.A.C. Nascimento, J. Phys. Chem. A, 103 (1999) 11194.
[13] M.D. Liptak, G.C. Shields, J. Am. Chem. Soc., 123 (2001) 7314.
[14] M. Namazian, H. Heidary, J. Mol. Struct.-Theochem, 620 (2003) 257.
[15] J.I. Mujika, J.M. Mercero, X. Lopez, J. Phys. Chem. A, 107 (2003) 6099.
[16] M. Namazian, F. Kalantary-Fotooh, M.R. Noorbala, D.J. Searles, M.L. Coote, J. Mol. Struct.-Theochem, 758 (2006) 275.
[17] M. Namazian, S. Halvani, J. Chem. Thermodyn., 38 (2006) 1495.
[18] M. Namazian, S. Halvani, M.R. Noorbala, J. Mol. Struct.-Theochem, 711 (2004) 13.
[19] N. Sadlej-Sosnowska, Theor. Chem. Acc., 118 (2007) 281.
[20] M. Namazian, M. Zakery, M.R. Noorbala, M.L. Coote, Chem. Phys. Lett., 451 (2008) 163.
[21] J. Ho, M.L. Coote, Theor. Chem. Acc., 125 (2010) 3.
[22] P. Poliak, Acta Chimica Slovaca, 7 (2014) 25.
[23] B. Khalili, M. Rimaz, Curr. Chem. Lett., 5 (2016) 7.
[24] M.A. Kashem Liton, S. Helen, M. Das, D. Islam, M.R. Karim, J. Phys. & Theor. Chem., 12 (2015) 243.
[25] M. Remko, C.-W. von der Lieth, Biorg. Med. Chem., 12 (2004) 5395.
[26] L.A. Curtiss, K. Raghavachari, J.A. Pople, J. Chem. Phys., 103 (1995) 4192.
[27] S. Sabharwal, K. Kishore, P. Moorthy, Radiat. Phys. Chem., 44 (1994) 499.