Composite membranes for proton exchange membrane fuel cells based on methyl methacrylate-co-maleimide /phosphotungstic acid

Document Type : Original Article

Authors

1 Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr, 83145/115 I. R., Iran

2 Department of Chemical Engineering, Kermanshah University of Technology, 67178 Kermanshah, Iran

Abstract

Poly(methyl methacrylate-co-nitrophenyl maleimide) (MMA-co-NMI) and poly(methyl‌‌‌‌ methacrylate-co-hydroxyphenyl maleimide)‌‌‌‌‌ (MMA-co-HMI) copolymers were synthesized using free radical polymerization of MMA with a new MI monomer containing phenyl and –NO2 groups. Proton exchange membrane fuel cell(PEMFC) were prepared using these copolymers as membrane matrix and phosphotungstic acid (PWA) as proton conductive additive. Dry-phase inversion method was employed to fabricate membranes with different concentrations of copolymers and PWA. Characteristics and proton conductivity of membranes were investigated using FTIR, SEM, TGA, DTG, DSC, ion exchange capacity, water uptake, and proton conductivity tests. Results revealed an increment in the thermal stability as well as ion exchange capacity of composite membranes prepared by addition of PWA. Moreover, applying MMA-co-HMI as copolymer and PWA as additive remarkably improved the proton conductivity of membrane (2.6×10−1 S.cm−1) due to the interaction between the functional groups of PWA (H3O+ ions, O atoms) and MMA-co-HMI copolymer (OH, C=O functional groups).

Keywords

Main Subjects


[1] J. Sutrisno, A. Fuchs, ECS Trans., 28 (2010) 1.
[2] Z. Zuo, Y. Fu and A. Manthiram, J. Polymers, 4 (2012) 1627.
[3] R. Borup, J. Meyers, B. Pivovar, Chem. Rev., 107 (2007) 3904.
]4[ مظفری. احمد; بهمئی. منوچهر; مهدیان. پرستو; رحمانیان. رضا، مجله شیمی کاربردی، شماره 14 (1394) ص 92.
[5] H. Zhang, and P.K. Shen, Chem. rev., 112 (2012) 2780.
[6] M. Faraji, P. Derakhshi and K. Tahvildari, J. Appl. Chem., 12 (2018) 31.
[7] S. Bose, N. H. Kim, K. Lau and T. Kulla, Prog. Polym. Sci., 36 (2011) 813.
[8] Y. Devrim, S. Erkan, et al., Int. J. Hydrogen Energy, 34 (2009) 3467.
[9] Y. Shao, G. Yin, Z. Wang, Y. Gao, J. Power Sources, 167 (2007) 235.
[10] H. Gao, and K. Lian, RSC Adv., 4(2014) 33091.
[11] F.J. Pinar, M.A. Rodrigo, et al., J. Power Sources, 274 (2015) 177.
[12] D.J. Kim, , M.J. Jo and S.Y. Nam, Ind. Eng. Chem., 21 (2015) 36.
[13] L. Li, and Y. Wang, J. power sources,162 (2006) 541.
[14] L. Xu, F, Xu, F. Chen, et al., J. Nanomaterials, 20 (2012) 1.
[15] B. Chen, G. Li, L. Wang, R. Chen, F. Yin, Int. J. Hydrogen Energy, 38 (2013) 7913.
[16] T. Uma, and F. Yin, Chem. phys. lett., 512 (2011) 104.
[17] R. Kumar, and S.S. Sekhon, Ionics,14 (2008) 509.
[18] B. Singh, R. Kumar and S. Sekhon, Solid State Ionics, 176 (2005) 1577.
[19] L. Othman, K.W. Chew and Z. Osman, Ionics, 13 (2007) 337.
[20] S. Rajendran, V.S. Bama and M.R. Prabhu, Ionics, 16 (2010) 27.
[21] Y. Liao, M. Rao, W. Li, et al., Electrochim. Acta, 54 (2009) 6396.
[22] D. Shanmukaraj, G.X. Wang, R. Murugan, H., J.K. Liu, Phys. Chem. of solids, 69 (2008) 243.
[23] Q. Xiao, Z. Li, D. Gao, H. Zhang., J. Membrane Sci., 326 (2009) 260.
[24] Y. Zhang, J. Li, et al., J. Mater. Sci., 49 (2014) 3442.
[25] H. Chung, C. Lee and H. Han, Polymer, 42 (2001) 319.
[26] A. Gültek, T.Seckin, Y. Gökcen and S. Köytepe, J. Appl. Sci., 3 (2015) 562.
[27] N. Asano, M. Aoki, et al., J. Am. Chem. Soc., 128 (2006) 1762.
[28] C. Genies, R. Mercier, B. Sillion, N. Cornet, et al., Polymer, 42 (2001) 359.
[29] E. Vallejo, C. Gavach, M. Pineri, et al., J. Membrane Sci., 160 (1999) 127.
[30] X. Li, L. Yan, and B. Yue, Int. J. Hydrogen Energy, 42 (2017) 515.
[31] B.-K. Chen, J.-M. Wong, T.-Y. Wu, L.-C. Chen and I-Chao Shih, Polymers, 6 (2014) 2720.
[32] Y.-L. Liu, Polym. Chem., 3 (2012) 1373.
[33] Tripathi, B.P. and V.K. Shahi, Prog. Polym. Sci., 36 (2011) 945.
[34] Y. Zhou, J. Yang, H. Su, et al., J. Am. Chem. Soc., 136 (2014) 4954.
[35] U.B. Mioč, S. Stojadinović and Z. Nedić, Mater., 3 (2009) 110.
[36] S.S. Madaeni, E. Rafiee, Z. Seyedzadeh, J. Barzin, J. Polym. Eng., 30 (2010) 109.
[37] V. Ramani, S. Swier, M. T. Shaw, R. A. Weiss and H. R. Kunz, J. Electrochemi. Soci, 155 (2008) 532.
[38] Filipe N.D.C. Gomes, Fabiana M.T. Mendes and Mariana M.V.M. Souza, Catal. Today, 279 (2017) 296.
[39] F. Atabaki, A. Abdolmaleki and A. Barati, Colloid. Polym. Sci., 294 (2016) 455.
[40] S.S. Madaeni, S. Amirinejad and M. Amirinejad, J. Membrane sci., 380 (2011) 132
[41] J. Jiang and O.M. Yaghi, Chemi. rev., 115 (2015) 6966.
[42] Yamada, M. and I. Honma, J. Phys. Chem. B., 110 (2006) 20486.
[43] V. Rao, N. Kluy, W. Ju and U. Stimming, Handbook of Membrane Separations: Chemical, Pharmaceutical, Food and Biotechnological Applications Second Edition, Publication; Boca Raton, FL: CRC Press, c, 2015.
[44] S.J. Peighambardoust, S. Rowshanzamir and M. Amjadi, Int. j. hydrogen energy, 35 (2010) 9349.
[45] B. Fei, H. Lu, W. Chen, John H. Xin., 44 (2006) 2261.