Magnetic activated carbon synthesis to reduce COD from the wastewater of Parsian Khavaran fibers factory using hybrid system of adsorption and membrane

Document Type : Original Article


1 Department of Chemical Engineering, Ferdowsi University, Mashhad, Iran

2 Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran


Treatment of the fiber factories wastewater, due to the high amount of COD, is essential. This research involves COD reduction from the wastewater of Parsian Khavaran fibers factory, using hybrid system of adsorption onto magnetic activated carbon and membrane. The magnetic activated carbon was derived from pistachio nut shell through chemical activation process (with phosphoric acid) and co-precipitation method. Scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectroscopy, BET analysis and vibrating sample magnetometer (VSM) were used for magnetic activated carbon characterization. According to the results, the surface of the magnetic activated carbon was uniformly porous, including spherical particles of diameter 40-70 nm. The BET surface analysis showed that the specific surface area and the total pore volume were 479.59 m2g-1 and 0.665 cm3g-1, respectively, and considering the VSM analysis, the magnetization of the magnetic activated carbon was determined equal to 4.615 emu g-1. Moreover, the effect of pH and adsorbent concentration on COD reduction were discussed. Consequently, the maximum reduction of COD took place in neutral condition with the concentration of 17 g/l of magnetic activated carbon.


Main Subjects

[1] J. Yang and K. Qiu, Chemical Engineering Journal, 167 (2011) 148.
[2] Y. Satyawali and M. Blakrishnan, Journal of Environmental Management, 86 (2008) 481.
[3] M. Soleimani and T. Kaghazchi, Bioresource Technology, 99 (2008) 5374.
[4] K. Yang, J. Peng, C, Srinivasakannan, L. Zhang, H. Xia and X. Duan, Bioresource Technology, 101 (2011) 6163.
[5] E. Schröder, K. Thomauske, C. Weber, A. Hornung and V. Tumiatti, Journal of Analytical and Applied Pyrolysis, 79 (2007) 106.
[6] E. Apaydın-Varol, Thesis in Chemical Engineering, Anadolu University, Eskişehir, Turkey.
[7] B. Jibril, O. Houache, R. Al-Maamari and B. Al-Rashidi, Journal of Analytical and Applied Pyrolysis, 83 (2008) 151.
[8] P. Perumal, M. Norhashimah and L. Yee, Journal of Applied Sciences Research, 2 (2013) 54.
[9] V. Fierro, G. Muniz A. Basta, H. El-Saied and A. Celzard, Journal of Hazardous Materials, 181 (2010) 27.
[10] T. Kaghazchi, N. Kolur and M. Soleimani, Journal of Industrial and Engineering Chemistry, 16 (2010) 368.
[11] T. Zhang, W. Walawender, L. Fan, M. Fan, D. Daugaard and R. Brown, Chemical Engineering Journal, 105 (2004) 59.
[12] Y. Juan and Q. Ke-Qiang, Environmental Science & Technology, 43 (2009) 3385.
[13] C. Bouchelta, M. Medjram, O. Bertrand and J. Bellat, Journal of Analytical and Applied Pyrolysis, 82 (2008) 70.
[14] D. Maity and D. Agrawal, Journal of Magnetism and Magnetic Materials, 308 (2007) 46.
[15] H. Demiral, I. Demiral, F. Tümsek and B. Karabacakoğlu, Surface and Interface Analysis, 40 (2008) 616.
[16] C. Wang, Q. Liu and X. Cheng, Journal of Materials Science & Technology, 10 (1994) 151.
[17] S. Rudge, T. Kurtz, C. Vessely, L. Catterall and D. Williamson, Biomaterials, 21 (2000) 1411.
[18] L. Oliveira, R. Rios, J. Fabris, V. Garg, K. Sapag, and R. Lago, Carbon, 40 (2002) 2177.
[19] G. Matta, M. Barros, R. Lambrecht, E. da Silva and O. Lima, Materials Research, 11 (2008).
[20] N. Rashidi and S. Yusup, Journal of Cleaner Production, 168 (2017) 474.
[21] S. Mopoung, P. Moonsri, W. Palas and S. Khumpai, The Scientific World Journal, (2015) 415961.
[22] H. Heidari, H.  Razmi and A. Jouyban, Journal of Chromatography, 1245 (2012) 1.
[23] R. Shokohi, M. Samarghandi, F. Pourfarzi and M. Shirzad Siboni, Iranian Journal of Health and Environment, 4 (2011) 1.
[24] P. Wasilewski, Earth and Planetary Science Letters, 20 (1973) 67.
[25] A. Khodabakhshi, M. Amin, M. Mozaffari and B. Bina, Health System Research, 6 (2010) 935.
[26] A. PTerzyk, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 177 (2001) 23.
[27] R. Sharma, J. Zondlo and D. Dadyburjor, Energy Fuels, 12 (1998) 589.
[28] S. Galvagno, S. Casu, T. Casabianca, A. Calabrese and G. Cornacchia, Waste Management, 22 (2002) 917.
[29] L. Khezami, A. Ould-Dris and R. Capart, Bio Resources, 2 (2007) 193.
[30] S. Arivoli, M. Sundaravadivelu and K. Elango, Indian Journal of Chemical Technology, 15 (2008) 130.
[31] O. Yavuz and A. Aydin, Polish Journal of Environmental Studies, 15 (2006) 155.
[33] M. Octoviane Dyan, G.Permana Putra, Budiyono, S.Sumardiono, T.Djoko Kusworo, Waste Technology, 4 (2015) 7.
[34] Z. Fallahnejad, Gh. Bakeri, M. Rahimnejad, Environmental Science & Technology, 4(2017) 19.
[35] M.T. Bankole, A.S. Abdulkareem, J.O. Tijani, S.S. Ochigbo, A.S. Afolabi, W.D. Roos, Water Resources and Industry, 18 (2017) 33.
[36] V. Fatemeh, R. Nahid, Y. Maryam, J. Of Applied Chemistry, 47 (1397) 287, in Persian.