The effect of surfactants on electrochemical hydrogen production

Document Type : Original Article


Iran university of science and technology


One of the problems of اydrogen production by the electrochemical method is forming and remaining of hydrogen bubbles on the surface of the electrode, which leads to considerable reduction in efficiency of hydrogen generation. The aim of this study is to investigate the effect of surface active agents on the quick departure of hydrogen bubbles and efficiency increase in electrochemical production of hydrogen in the electrolyte solution of the electrolysis cell.
In this work, the common Platinum electrode used as a cathode electrode; and three surface active materials, anionic (sodium dodecylbenzene sulfonate; SDBS), cationic (Cetyltrimethyl Ammonium Bromide; CTAB), and neutral (TritonX-100), are employed in order to investigate the effect of surface active agents. The efficiency of these surface active agents on hydrogen production is investigated by voltammetric methods with regard to current density, initial potential, flow stability, and charge transfer resistance. The results indicate that electrochemical generation of hydrogen in 0.5 M sulfuric acid containing 0.5 mM of active surface material (SDS) is the most efficient one at room temperature.


Main Subjects

[[1]] C.-J. Winter, J. Nitsch, Springer Science & Business Media, (2012).
[2] خواجه طالخونچه؛ سعید; حقیقی؛ محمد; عبدالهی فر؛ مظفر; عجمین؛ حسین، مجله شیمی کاربردی سمنان، شماره 9 (1393) ص 89.
[3] حکمی زاده؛ مونس; افشار؛  شهرآرا; تجردی؛ آزاده; هاشمیان زاده؛ مجید; فدایی؛ محمد رضا; بزرگی؛ بابک، مجله شیمی کاربردی سمنان، شماره 28 (1392) ص 9.
[4] S. Ahmed and M. Krumpelt. International journal of hydrogen energy, 26.4 (2001) 291.
[5] O. Pantani, E. Anxolabéhère-Mallart, A. Aukauloo, P. Millet, Electrochemistry communications, 9 (2007) 54.
[6] J.D. Holladay, J. Hu, D.L. King, Y. Wang, Catalysis Today, 139 (2009) 244.
[7] M. Wang, Z. Wang, X. Gong, Z. Guo, Renewable and Sustainable Energy Reviews, 29 (2014) 573.
[8] R. LeRoy, International Journal of Hydrogen Energy, 8 (1983) 401.
[9] N. Behrooz, A. Ghaffarinejad, N. Sadeghi, Journal of Electroanalytical Chemistry, 782 (2016) 1.
[10]A. Moradpour, A. Ghaffarinejad, A. Maleki, V. Eskandarpour, A. Motaharian, RSC Advances, 5 (2015) 70668.
[11] صالحی راد؛ علیرضا; پروینی؛ مهدی; ابوسی؛ لاله; عابدی؛ محمد، مجله شیمی کاربردی سمنان، شماره 36 (1394) ص 133.
[12] G. Passas, C. W. Dunnill, Journal of Fundamentals of Renewable Energy and Applications, 5 (2015) 1000188.
[13] Q. Han, S. Cui, N. Pu, J. Chen, K. Liu, and X. Wei, International Journal of Hydrogen Energy, 35 (2010) 5194.
[14] D. Kiuchi, H. Matsushima, Y. Fukunaka, and K. Kuribayashi, Journal of the Electrochemical Society, 153 (2006) 138.
[15] K. Aldas, Applied mathematics and computation, 154 (2004) 507.
[16] R. Peipmann, R. Lange, C. Kubeil, G. Mutschke, and A. Bund, Electrochimica Acta, 56 (2010) 133.
[17] L. Janssen, Journal of Applied Electrochemistry, 30 (2000) 507.
[18] M. Wang, Z. Wang, and Z. Guo, International Journal of Hydrogen Energy, 35 (2010) 3198.
[19] Z.D. Wei, M.B. Ji , S.G. Chen , Y. Liu , C.X. Sun , G.Z. Yin , P.K Shen , and S.H. Chan, Electrochemica Acta, 52 (2007) 3323.
[20] H. Matsushima, Y. Fukunaka, and K. Kuribayashi, Electrochimica Acta, 51 (2006) 4190.