Synthesis and Characterization of Organoplatinum(II) Complexes Containing Isocyanide Ligands: Molecular Docking Studies

Document Type : Original Article

Authors

1 Institute for Advanced Studies in Basic Sciences (IASBS)

2 Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Yousef Sobouti Blvd., Zanjan 45137-66731, Iran

3 Faculty of Chemistry, Kharazmi University, Tehran, Iran

Abstract

The present work investigates synthesis and characterization of two organoplatinum(II) complexes comprising various isocyanide ligands with general formula of [PtR'2(CNR)2] (R' = p-tolyl, R = 2-chloro-6-methylphenyl (1) and 2-naphtyl (2)). The resulting complexes were characterized by multinuclear (1H, 13C, 195Pt) NMR spectroscopy by assistance of two dimensional (HH COSY and HSQC) NMR technique. Besides, HH-NOESY (Nuclear Overhauser Effect Spectroscopy) technique was employed to provide more accurate 1HNMR assignments. In order to have a better structural vision for the complexes, the structures were optimized by DFT (Density Functional Theory) method in CH2Cl2 solution. The molecular docking studies were performed for complexes 1 and 2 while it revealed the specific binding site, binding mode and the best orientation of the complexes to DNA.

Keywords

Main Subjects


[1] T. C. Johnstone, K. Suntharalingam and S. J. Lippard, Chem. Rev., 116 (2016) 3436.
[2] L. Kelland, Nat. Rev. Cancer, 7 (2007).
[3] S. R. McWhinney, R. M. Goldberg and H. L. McLeod, Mol. Cancer Ther., 8 (2009) 10.
[4] A. S. Abu-Surrah and M. Kettunen, Curr. Med. Chem., 13 (2006) 1337.
[5] M. Patra, S. G. Awuah and S. J. Lippard, J. Am. Chem. Soc., 138 (2016) 12541.
[6] J. J. Wilson and S. J. Lippard, Chem. Rev., 114 (2014) 4470.
[7] D.-L. Ma, C.-M. Che and S.-C. Yan, J. Am. Chem. Soc., 131 (2008) 1835.
[8] Z.-F. Chen, Q.-P. Qin, J.-L. Qin, Y.-C. Liu, K.-B. Huang, Y.-L. Li, T. Meng, G.-H. Zhang, Y. Peng and X.-J. Luo, Chemotherapy, 3 (2015) 6.
[9] A. Zamora, S. A. Pérez, V. Rodríguez, C. Janiak, G. S. Yellol and J. Ruiz, J. Med. Chem., 58 (2015) 1320.
[10] J. Berenguer, J. Pichel, N. Gimenez, E. Lalinde, M. Moreno and S. Pineiro-Hermida, Dalton Trans., 44 (2015) 18839.
[11] A. Esmaeilbeig, H. Samouei, S. Abedanzadeh and Z. Amirghofran, J. Organomet. Chem., 696 (2011) 3135.
[12] F. Samari, B. Hemmateenejad, M. Shamsipur, M. Rashidi and H. Samouei, Inorg. Chem., 51 (2012) 3454.
[13] M. Fereidoonnezhad, B. Kaboudin, T. Mirzaee, R. Babadi Aghakhanpour, M. Golbon Haghighi, Z. Faghih, Z. Faghih, Z. Ahmadipour, B. Notash and H. R. Shahsavari, Organometallics, 36 (2017) 1707.
[14] M. Fereidoonnezhad, M. Niazi, Z. Ahmadipour, T. Mirzaee, Z. Faghih, Z. Faghih and H. R. Shahsavari, Eur. J. Inorg. Chem., 2017 (2017) 2247.
[15] M. Fereidoonnezhad, M. Niazi, M. Shahmohammadi Beni, S. Mohammadi, Z. Faghih, Z. Faghih and H. R. Shahsavari, ChemMedChem., 12 (2017) 456.
[16] M. Frezza, Q. P. Dou, Y. Xiao, H. Samouei, M. Rashidi, F. Samari and B. Hemmateenejad, J. Med. Chem., 54 (2011) 6166.
[17] S.-W. Lai, H.-W. Lam, W. Lu, K.-K. Cheung and C.-M. Che, Organometallics, 21 (2002) 226.
[18] M. Baya, Ú. Belío, J. Forniés, A. Martín, M. Perálvarez and V. Sicilia, Inorg. Chim. Acta, 424 (2015) 136.
[19] M. Jin, T. Seki and H. Ito, Chem. Commun., 52 (2016) 8083.
[20] C. Wu, H.-F. Chen, K.-T. Wong and M. E. Thompson, J. Am. Chem. Soc., 132 (2010) 3133.
[21] J. Li, P. I. Djurovich, B. D. Alleyne, M. Yousufuddin, N. N. Ho, J. C. Thomas, J. C. Peters, R. Bau and M. E. Thompson, Inorg. Chem., 44 (2005) 1713.
[22] A. A. Melekhova, A. S. Novikov, K. V. Luzyanin, N. A. Bokach, G. L. Starova, V. V. Gurzhiy and V. Y. Kukushkin, Inorg. Chim. Acta, 434 (2015) 31.
[23] C.-F. Leung, S.-M. Ng, J. Xiang, W.-Y. Wong, M. H.-W. Lam, C.-C. Ko and T.-C. Lau, Organometallics, 28 (2009) 5709.
[24] T. G. Appleton, R. D. Berry, J. R. Hall and D. W. Neale, J. Organomet. Chem., 342 (1988) 399.
[25] A. Balazs, K. Johnson and G. Whitesides, Inorg. Chem., 21 (1982) 2162.
[26] T. M. Miller and G. M. Whitesides, J. Am. Chem. Soc., 110 (1988) 3164.
[27] J. s. R. Berenguer, J. Fernández, E. Lalinde and S. Sánchez, Organometallics, 32 (2013) 835.
[28] M. Basato, F. Benetollo, G. Facchin, R. A. Michelin, M. Mozzon, S. Pugliese, P. Sgarbossa, S. M. Sbovata and A. Tassan, J. Organomet. Chem., 689 (2004) 454.
[29] S. M. Drew, D. E. Janzen, C. E. Buss, D. I. MacEwan, K. M. Dublin and K. R. Mann, J. Am. Chem. Soc., 123 (2001) 8414.
[30] A. Mayr, S. Wang, K.-K. Cheung and M. Hong, J. Am. Chem. Soc., 684 (2003) 287.
[31] S. M. Drew, D. E. Janzen and K. R. Mann, Anal. Chem., 74 (2002) 2547.
[32] C. E. Buss and K. R. Mann, J. Am. Chem. Soc., 124 (2002) 1031.
[33] D. Vicenzi, P. Sgarbossa, A. Biffis, C. Tubaro, M. Basato, R. A. Michelin, A. Lanza, F. Nestola, S. Bogialli and P. Pastore, Organometallics, 32 (2013) 7153.
[34] M. Rashidi, M. Hashemi, M. Khorasani-Motlagh and R. J. Puddephatt, Organometallics, 19 (2000) 2751.
[35] M. J. Frisch, N. Rega, G. A. Petersson, G. W. Trucks, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, J. C. Burant, T. Nakajima, Y. Honda, O. Kitao, H. B. Schlegel, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, J. M. Millam, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, G. E. Scuseria, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, S. S. Iyengar, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, M. A. Robb, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, J. Tomasi, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. R. Cheeseman, J. V. Ortiz, Q. Cui, A. G. Baboul, V. Barone, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, J. A. Montgomery Jr, R. L. Martin, D. J. Fox, B. Mennucci, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, T. Vreven, M. W. Wong, M. Cossi, C. Gonzalez, J. A. Pople, K. N. Kudin and G. Scalmani, Gaussian 03, Revision C.02 (2004).
[36] A. D. Becke, J. Chem. Phys., 98 (1993) 5648.
[37] B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett., 157 (1989) 200.
[38] C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 37 (1988) 785.
[39] W. R. Wadt and P. J. Hay, J. Chem. Phys., 82 (1985) 284.
[40] L. E. Roy, P. J. Hay and R. L. Martin, J. Chem. Theory Comput., 4 (2008) 1029.
[41] N. Eswar, D. Eramian, B. Webb, M.-Y. Shen and A. Sali, Structure proteomics: high-throughput methods (2008) 145.
[42] A. Mojaddami, A. Sakhteman, M. Fereidoonnezhad, Z. Faghih, A. Najdian, S. Khabnadideh, H. Sadeghpour and Z. Rezaei, Res. Pharm. Sci., 12 (2017) 21.
[43] S. Zare, M. Fereidoonnezhad, D. Afshar and Z. Ramezani, Comput. Biol. Chem., 67 (2017) 22.
[44] M. Fereidoonnezhad, Z. Faghih, A. Mojaddami, S. Tabaei and Z. Rezaei, J. Sci., Islam. Repub. Iran, 27 (2016) 39.
[45] S. Jamali and S. Abedanzadeh, J. Appl. Chem., 12 (2018) DOI: 10.22075/CHEM.2017.10794.1049.
[46] R. Eshaghi Malekshaha , M. Salehia and A. Khaleghian, J. Appl. Chem., 11 (2017) 165.