Removal of copper (II) from aqueous solutions by organic polymer-modified TiO2/bentonite nanocomposites

Document Type : Original Article

Authors

1 Department of Chemistry, College of Basic Science, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran

2 Young Researchers and Elite Clube, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran

Abstract

In order to investigate the effect of pectin and dextran polymers on the adsorptive capacity of TiO2/bentonite nanosorbents, two nanocomposites of TiO2/pectin/bentonite and TiO2/dextran/bentonite were made by sol-gel method. Their investigation by FT-IR spectroscopy confirms the expected microstructure, and XRD results confirm the formation of anatase titania crystalline phase and also crystalline structure of bentonite. FESEM images showed the formation of TiO2 nanoparticles. These two nanocomposites were used for removing copper (II) ion from water and the effective factors on removal were investigated that maximum removal for both nanocomposites is in pH=7, adsorption dosage of 0.04g and temperature of 25°C, but contact times for two composites of TiO2/pectin/bentonite and TiO2/dextran/bentonite were equal to 20 and 30 minutes and adsorptive capacity for them were 40.16 and 22.12 mg Cu2+ per gram of adsorbent, respectively. Investigating the effect of interference ions had no considerable influence on removal efficiency. The results show that adsorption of Cu2+ by TiO2/pectin/bentonite and TiO2/dextran/bentonite nanocomposites follows Langmuir and Freundlich isotherms.

Keywords

Main Subjects


 
[1] K. Rostami, M.R. Joodaki, J. Chem. Eng. Data, 89 (1-3) (2002) 239.
[2] N. Sobhi, Removal of heavy metal incustrial waste water by ash [dissertation] Tarbiat Modarres University, Tehran, (In Persian) (1998).
[3] J. Xu, L. yang, Z. Wang, G. Dong, J. Hung, Y. Wang, Chemosphere, 62 (2006) 602.
[4] P.R. Gadupudi, L. Chungsying, S. Fengsheng, Sep. Purif. Technol., 58 (2007) 224.
[5] H.L. Zhuang, G.P. Zheng, A.K. Soh, Comp. Mater. Sci., 43 (2008) 823.
[6] S. Karabulut, A. Karabakan, A. Denizli, Y. Yuoruom, Sep. Purif. Technol., 18 (2000) 177.
[7] H.B. Bardl, Heavy metal in environment, 1st Ed., Elsevier (2005).
[8] K. Kabra, R. Chaudhary, R.L. Sawhney, Ind. Eng. Chem. Res., 43 (2004) 7683.
[9] R.S. Juang, S.H. Lin, T.Y. Wang, Chemosphere, 53(10) (2003) 1221.
[10] D. Zhou, L. Zhang, J. Zhou, S. Guo, Water Res., 38 (11) (2004) 2643.
[11] H. Guolin, Y. Chuo, Zh. Kai, Sh. Jeffrey, J. Chem. Eng. Data, 17 (2009) 960.
[12] K. Kabra, R. Chaudhary, R.L. Sawhney, Ind. Eng. Chem. Res., 43 (2004) 7683.
[13] S. Devipriya, S. Yesodharan, Sol. Energ. Mat. Sol. Cells, 86 (3) (2005) 309.
[14] Y. Chen, F. Li, J. Colloid Interface Sci., 347 (2010) 277.
[15] G. Bagheri Marandi, G.R. Mahdavinia, S. Ghafary, J. Polym. Res., 18 (2011) 1487.
[16] G. Bagheri Marandi, M. Baharloui, Iran. J. Polym. Sci. Technol., 24 (2012) 505 (In Persian).
[17] M. Abbassian, J. Appl. Polym. Sci., 122 (2011) 2573.
[18] P. Aberoomand Azar, Sh. Moradi Dehaghi, S. Samadi, M. Saber Tehrani, M.H. Givianrad, Turk. J. Chem., 35 (2011) 37.
[19] K.M. Parida, N.J. Sahu, J. Mol. Catal. A-Chem., 287 (2008) 151.
[20] H. Yaghoubi, N. Taghavinia, K. Alamdari, Surf. Coat. Tech., 204 (2010) 1562.
[21] M. Ates, Y. Bayrak, O. Yoruk, S. Caliskan, J. Alloys Compd., 728 (2017) 541.
[22] R. Ambati, P.R. Gogate, Ultrason. Sonochem., 40 (2018) 91.
[23] A. Mishra, A. Mehta, M. Sharma, S. Basu, J. Environ. Chem. Eng., 5 (2017) 644.
[24] N. Saelim, R. Magaraphan, T. Sreethawong, Ceram. Int., 37 (2011) 659.
[25] D.B. Nguyen, T.D.C. Nguyen, T.P. Dao, H.T. Tran, V.N. Nguyen, D.H. Ahn, J. Indust. Eng. Chem., 18 (2012) 1764.
[26] A. Mishra, A. Mehta, M. Sharma, S. Basu, J. Alloys Compd., 694 (2017) 574.
[27] M. Önal, S. Kahraman, Y. Sarıkaya, Appl. Clay Sci., 35 (2007) 25.
[28] R. Awasthi, G.T. Kulkarni, M.V. Ramana, T.d.J.A. Pinto, I.S. Kikuchi, D.D.M. Ghisleni, M.d.S. Braga, P.D. Bank, K. Dua, Int. J. Biol. Macromol., 97 (2017) 721.
[29] Dr.S.K. Bajpai, N. Chand, S. Tiwari, S. Soni, Int. J. Biol. Macromol., 93 (2016) 978.
[30] M. Fathi, D. Almasifar, J. Appl.Chem., 43(12) (2017) 151.
[31] H. Zavvar Mousavi, Z. Lotfi, J. Appl. Chem., 7(23) (2012) 49.
[32] V. Masindi, W.M. Gitari, J. Clean. Prod., 112 (2016) 1077.
[33] M. Vhahangwele, G.W. Mugera, J. Environ. Chem. Eng., 3 (2015) 2416.
[34] X. Jin, S. Zha, S. Li, Z. Chen, Appl. Clay Sci., 102 (2014) 196.
[35] H. Koyuncu, A.R. Kul, J. Environ. Chem. Eng., 2 (2014) 1722.