Oxidation desulfurization of gasoline by a new organic-inorganic hybride nanocomposite (TBA)4PW11Fe@PVA as an efficient and recoverable nanocatalyst

Document Type : Original Article

Authors

1 Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran

2 Department of Chemistry, Faculty of Science, University of Zanjan, 451561319 Zanjan, Iran

Abstract

In this research, to obtain the clean fuel, a new organic-inorganic hybride nanocomposite, (TBA)4PW11Fe@PVA, was successfully synthesized by sol-gel method and used as a catalyst for oxidative desulfurization (ODS) of gasoline. This nanocatalyst has been prepared by reaction of (TBA)4PW11Fe and PVA. The incorporation of the materials was confirmed by FT-IR, UV-vis, XRD and SEM characterization methods. The catalytic activity of the catalyst was tested on oxidative desulfurization of gasoline by using CH3COOH/H2O2 as oxidant. Besides, the results were compared with the oxidation process of prepared model fuel under the same conditions. The results show that the synthesized catalyst has a very effective ability to remove sulfur compounds from gasoline with high yield. The percentage of removal of sulfur compounds for dibenzothiophene (DBT), benzothiophene (BT), thiophene (Th) and gasoline was 97,97,96 and 96%, respectively. The synthesized heterogeneous nanocatalyst could be separated and recycled successfully after five times. The advantages of this method are non-toxicity, mild reaction and environment friendly.

Keywords

Main Subjects


[1] X. Zeng, X. Xiao, Y. Li, J. Chen, H. Wang, Appl. Catal. B: Environ. 209 (2017) 98.
[2] P. S. Kulkarni, C. A. M. Afonso, Green Chem. 12 (2010) 1139.
[3] A. S. Ogunlaja, M. J. Coombes, N. Torto, Z. R. Tshentu, React. Funct. Polym. 81 (2014) 61.
[4] W. Wang, S. Wang, H. Liu, Z. Wang, Fuel 86 (2007) 2747.
[5] F. Emanuela, C. Claudia, C.A. Lina, P. Patrizia, C. Francesca, C.G. Anna, G. Giuseppe, C. Giuseppe, Appl. Surf. Sci. 331 (2015) 292.
[6] M. Zhang, W. Zhu, S. Xun, H. Li, Q. Gu, Z. Zhao, Q. Wang, Chem. Eng. J. 220 (2013) 328.
[7] L. Zhang, J. Wang, Y. Sun, B. Jiang, H. Yang, Chem. Eng. J. 328 (2017) 445.
[8] M. M. M. Abd El-Wahab, A. A. Said, J. Mol. Catal. A: Chem. 240 (2005) 109.
[9] Y. Tian, G. Wang, J. Long, J. Cui, W. Jin, D. Zeng, Chin. J. Catal. 37 (2016) 2098.
[10] W. Zhu, G. Zhu, H. Li, Y. Chao, Y. Chang, G. Chen, C. Han, J. Mol. Catal. A: Chem. 347 (2011) 8.
[11] A.F. Shojaei, M.A. Rezvani, M.H. Loghmani, Fuel Process. Technol. 118 (2014) 1.
[12] M. A. Rezvani, F. M. Zonoz, J. Ind. Eng. Chem.22 (2015) 83.
[13] M. A. Rezvani, M. Oveisi, M. Ali Nia Asli, J. Mol. Catal. A: Chem., 410 (2015) 121.
[14] M. A. Rezvani, Z. S. Aghbolagh, H. H. Monfared, S. Khandan, J. Ind. Eng. Chem.52 (2017) 42.
[15] M. A. Rezvani, S. Khandan, N. Sabahi, Energy Fuels, 31 (2017) 5472.
[16] M. A. Rezvani, M. Alinia Asli, M. Oveisi, R. babaei, K. Qasemi, S. Khandan, RSC Adv. 6 (2016) 53069.
[17] M. A. Rezvani, M. Alinia Asli, S. Khandan, H. Mousavi, Z. Shokri Aghbolagh, Chem. Eng. J. 312 (2017) 243.
[18] M. A. Rezvani, S. Khandan, M. Aghmasheh, J. Taiwan. Inst. Chem. Eng. 77 (2017) 321.