[1] A. Behnaz, S. Sayedeh Maryam, M. Leila, J. Of Applied Chemistry, 35 (1394) 45, in Persian.
[2] S.-Y. Lee, C.-Y. Yang, C.-L. Peng, M.-F. Wei, K.-C. Chen, C.-J. Yao, M.-J. Shieh, A theranostic micelleplex co-delivering SN-38 and VEGF siRNA for colorectal cancer therapy, Biomaterials, 86 (2016) 92.
[3] M. Gan, W. Zhang, S. Wei, H. Dang, The influence of mPEG-PCL and mPEG-PLGA on encapsulation efficiency and drug-loading of SN-38 NPs, Artificial cells, nanomedicine, and biotechnology, 45 (2017) 38.
[4] Y. Jia, M. Yuan, H. Yuan, X. Huang, X. Sui, X. Cui, F. Tang, J. Peng, J. Chen, S. Lu, Co-encapsulation of magnetic Fe3O4 nanoparticles and doxorubicin into biodegradable PLGA nanocarriers for intratumoral drug delivery, International journal of nanomedicine, 7 (2012) 1697.
[5] R.M. England, J.I. Hare, J. Barnes, J. Wilson, A. Smith, N. Strittmatter, P.D. Kemmitt, M.J. Waring, S.T. Barry, C. Alexander, Tumour regression and improved gastrointestinal tolerability from controlled release of SN-38 from novel polyoxazoline-modified dendrimers, Journal of Controlled Release, 247 (2017) 73.
[6] H.Z.M. Aisan Khaligh, Alimorad Rashidi, Ultrasonic assisted removal of Ni(II) and Co(II) ions from aqueous solutions by carboxylated nanoporous graphene, Journal of Applied Chemistry, 11 (2017) 10.
[7] P. Tahereh, G. Hadi, Sh. Mohammad reza, B. Y. Mohsen, J. Of Applied Chemistry, 26 (1392) 9, in Persian.
[8] W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang, C. Fan, Graphene-based antibacterial paper, ACS nano, 4 (2010) 4317.
[9] V. Georgakilas, Functionalization of graphene, First ed., John Wiley & Sons, Germany, 2014.
[10] Y. Guo, S. Guo, J. Li, E. Wang, S. Dong, Cyclodextrin–graphene hybrid nanosheets as enhanced sensing platform for ultrasensitive determination of carbendazim, Talanta, 84 (2011) 60.
[11] E.M. Del Valle, Cyclodextrins and their uses: a review, Process biochemistry, 39 (2004) 1033.
[12] C. Foulon, J. Tedou, T.Q. Lamerie, C. Vaccher, J. Bonte, J. Goossens, Assessment of the complexation degree of camptothecin derivatives and cyclodextrins using spectroscopic and separative methodologies, Tetrahedron: Asymmetry, 20 (2009) 2482.
[13] N. Zafar, H. Fessi, A. Elaissari, Cyclodextrin containing biodegradable particles: from preparation to drug delivery applications, International journal of pharmaceutics, 461 (2014) 351.
[14] Z. Liu, J.T. Robinson, X. Sun, H. Dai, PEGylated nano-graphene oxide for delivery of water insoluble cancer drugs, Journal of the American Chemical Society, 130 (2008) 10876.
[15] W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide, Journal of the American Chemical Society, 80 (1958) 1339.
[16] E.Einafshar, A.Haghighi Asl, A.Hashem Nia, M.Mohammadi, A.Malekzadeh, M.Ramezani, New cyclodextrin-based nanocarriers for drug delivery and phototherapy using an irinotecan metabolite Carbohydr Polym, 194 (2018) 103.
[17] H. El Ghandoor, H. Zidan, M.M. Khalil, M. Ismail, Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles, Int. J. Electrochem. Sci, 7 (2012) 5734.
[18] N. Sepehri, H. Rouhani, F. Tavassolian, H. Montazeri, M.R. Khoshayand, M.H. Ghahremani, S.N. Ostad, F. Atyabi, R. Dinarvand, SN38 polymeric nanoparticles: in vitro cytotoxicity and in vivo antitumor efficacy in xenograft balb/c model with breast cancer versus irinotecan, International journal of pharmaceutics, 471 (2014) 485.
[19] E.S. Shibu, M. Hamada, N. Murase, V. Biju, Nanomaterials formulations for photothermal and photodynamic therapy of cancer, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 15 (2013) 53.
[20] V. Štengl, S. Bakardjieva, T.M. Grygar, J. Bludská, M. Kormunda, TiO2-graphene oxide nanocomposite as advanced photocatalytic materials, Chemistry Central Journal, 7 (2013) 41.