Synthesis, characterization, and electrochemical properties of polyaniline/Co(II) metal-organic framework composites

Document Type : Original Article

Authors

1 science-chemistry-shahid chamran university-ahvaz-iran

2 Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 University of Shahid Chamran

4 Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

Polyaniline/Co(II) metal-organic framework composites (PANI/x%Co-MOF) were synthesized by hydrothermal preparation of Co(II) metal-organic framework in the presence of as-prepared polyaniline. The composites were characterized using powder X-ray diffraction (PXRD), fourier-transform infrared (FT-IR), scanning electron microscopy (SEM), and Co elemental EDS-mapping. Crystal stability of Co(II) metal-organic framework in the composites was confirmed by powder X-ray diffraction. The Co elemental EDS-mapping shows that the cobalt is uniformly dispersed in the polymer matrix. Electrochemical properties of prepared composites were evaluated by cyclic voltammetry (CV) and galvanostatic charge/discharge methods in a conventional three-electrode system. The results of electrochemical studies showed that the PANI/50%Co-MOF composite has the highest specific capacitance, 144 F g-1, at 1 A g-1 current density in KNO3 (3 M) electrolyte. The composite electrodes have shown a higher capacity than pure polyaniline and Co(II) metal-organic framework, due to the synergistic effects.

Keywords

Main Subjects


[1] L. ZhuX-Q. LiuH-L. Jiang, L-B. Sun, Chemical Reviews, 117 (2017) 8129.
[2] X. ChenR. TongZ. ShiB. YangH. LiuS. DingX. WangQ. LeiJ. WuW. Fang, ACS Applied Materials & Interfaces10 (2018) 2328.
[3] Y. Li, R.T. Yang, Langmuir23 (2007) 12937.
[4] A. Mansoor, F. Mojtaba, Gh. Ali, J. Of Applied Chemistry, 30 (1393) 79, in persian.
[5] D. Sheberla, J. C. Bachman, J. S. Elias, C-J. Sun, Y. Shao-Horn, M. Dinca, Nature Materials, 16 (2017) 220.
[6] G. Xu, P. Nie, H. Dou, B. Ding, L. Li, X. Zhang, Materials Today, 20 (2017) 191.
[7] K. M. ChoiH. M. JeongJ. H. ParkY-B. ZhangJ. K. Kang, O. M. Yaghi, ACS Nano8 (2014) 7451.
[8] P. WenP. Gong,J. Sun,J. Wang, S. Yang,Journal of Materials Chemistry A, 3 (2015) 13874.
[9] L. Wan, E. Shamsaei, C. D. Easton, D. Yu, Y. Yan, Y. Liang, X. Chen, Z. Abbasi, A. Akbari, X. Zhang, H. Wang, Carbon, 121 (2017) 330.
[10] C. Qu,L. Zhang,W. Meng,Z. Liang,B. Zhu,D. Dang,S. Dai,B. Zhao,H. Tabassum,S. Gao,H. Zhang,W. Guo,R. Zhao,X. Huang,M. Liu,  R. Zou, Journal of Materials Chemistry A, 6 (2018) 4003.
[11] X. XuW. ShiP. LiS. YeC. YeH. YeT. LuA. ZhengJ. ZhuL. XuM. Zhong, X. Cao, Chemistry of Materials29 (2017) 6058.
[12] S. Nan, G. Yong, Z. Yun, Y. Yan, Y. Lin, M. Jin, C. Fan, Q. J. Xu, H. Yun, Journal of Power Sources, 316 (2016) 176.
[14] L. WangX. FengL. RenQ. PiaoJ. ZhongY. WangH. LiY. Chen, B. Wang, Journal of the American Chemical Society137 (2015) 4920.
[15] A. sara, N. Masoud, H. Mohammad, J. Of Applied Chemistry, 33 ( 1393) 65, in persian.
[16] A. Ramanavicius, A. Ramanaviciene, A.Malinauskas, Electrochimica Acta, 51 (2006) 6025.
[17] Sh. N. Mehdi, K. T. Fatemeh, J. Yaser, J. Of Applied Chemistry, 40 ( 1395) 33, in persian.
[18] S. A. Ansari, H. Fouad, S.G. Ansari, M. Palashuddin, M. Hwan Cho, Journal of Colloid and Interface Science, 504 (2017) 276.
[19] S. Liu, Y. Ma, M. Cui, X. Luo, Sensor and Actuator B: Chemical,255 (2018) 2568.
[20] T. Haiyan, L. Cheng, Y. Yunfan, W. Jinping, Journal of Wuhan University of Technology-Materials Science Edition, 30 (2015) 71.
[21] S. Nan Guo, Y. Zhu, Y. Yun Yan, Y. Lin Min, J. Chen Fan, Q. Jie Xu, H. Yun,
Journal of Power Sources, 316 (2016) 176.
[22] X. Feng, N. Chen,J. Zhou,Y. LiZ. Huang,L. Zhang,Y. Ma, L. Wang, X. Yan, New Journal of Chemistry, 39 (2015) 2261.
[23] S. Giri, D. Ghosh, C. Kumar Das, Advanced Functional Materials, 24 (2014) 1312.
[24] S-Y. Lee, J-I. Kim, S-J. Park, Energy, 78 (2014) 298. 
[25] V. Hoa Nguyena, J-J. Shima, Synthetic Metals,207 (2015) 110.
[26] C. Pan, H. Gu, L. Dong, Journal of Power Sources, 303 (2016) 175.
[27] K. Huang, Y. Xu, L. Wang, D. Wu, RSC Advances, 5 (2015) 32795.
[28] Y. Wu, X. Song, S. Li, J. Zhang, X. Yang, P. Shen, L. Gao, R. Wei, J. Zhang, G. Xiao, Journal of Industrial and Engineering Chemistry, 58 (2018) 296.
[29] C. LiX. LouM. ShenX. HuZ. GuoY. WangB. HuQ. Chen, ACS Applied Materials & Interfaces8 (2016) 15352.
[30] H. Zhang, Y. Dai, H. Zhang, W. Wang, Q. Huang, Y. Chen, L. Pu, International Journal of Electrochemistry Science, 11 (2016) 6279.
[31] N. Yang, H. Song, X. Wan, X. Fan, Y. Su, Y. Lv Y, Analyst140 (2015) 2656.
[32] S. Shamaei, A.R. Abbasi, N. Noori, E. Rafiee, A. Azadbakht, Colloids Surfaces A: Physicochemical and Engineering Aspects, 431 (2013) 66.
[33] S. Giri, D. Ghosh, C. Kumar Das, Advanced Functional Materials, 24 (2014) 1312.
[34] E. Hee Jo, H. Dong Jang, H. Chang, S. Kyung Kim, J-H. Choi, C. Min Lee, ChemSusChem,10 (2017) 2210.
[35] H-P. Conga, X-C. Rena, P. Wang, S-H.Yu, Energy & Environmental Science, 6 (2013) 1185.
[36] S. Dhibar, S. Sahoo, C. K. Das, R. Singh, Journal of Materials Science: Materials in Electronics, 24 (2013) 576.
[37] S. Yu, D. Liu, S. Zhao, B. Bao, C. Jin, W. Huang, H. Chen, Z. Shen, RSC Advances, 5 (2015) 30943.
[38] M-H. Bai, T-Y. Liu, F. Luan, Y. Li, X-X. Liu, Journal of Materials Chemistry A, 2 (2014) 10882.
[39] G. Han, Y. Liu, L. Zhang, E. Kan, S. Zhang, J. Tang, W. Tang, Scientific Reports, 4 (2014) 4824.
[40] P. R. Deshmukh, R. N. Bulakhe, S. N. Pusawale, S. D. Sartale, C. D. Lokhande, RSC Advances, 5 (2015) 28687.