Synthesis of amine functionalized KIT-6 mesoporous magnetic silica nanocomposite for the removal of Reactive Yellow dye from aqueous solutions

Document Type : Original Article

Authors

1 department of chemistry, Faculty of Sciences, Rasht Branch, Rasht, Iran

2 department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran

3 Young Researchers and Elite Club, Rasht Branch, Islamic Azad University, Rasht, Iran

Abstract

In the present study, Kit-6 silica mesoporous was chemically synthesized on the surface of silica coated magnetite core and functionalized by amine groups to obtained Fe3O4@SiO2@Kit-6 MNCs. The amino functional groups were chemically bonded on the surface of synthesized MNCs by post toluene reflux synthesis method and after characterization by XRD, FT-IR, EDX and SEM , it’s effectiveness as an adsorbent for the removal of reactive yellow160 dye from aqueous solutions was evaluated. Experimental factors affecting the dye removal efficiency such as sorbent weight (0.08 g), ionic strength (without salt addition), pH (4), sample volume (10 ml), and contact time (20 min) were optimized by Taguchi experimental design. The results revealed that removal efficiency of reactive yellow was more than 97% in optimal conditions. Pseudo first order, pseudo second order, intraparticle diffusion and Ilovich models were considered to evaluate the rate parameters. Kinetic data were fully fitted to the pseudo-second order kinetic model. Also, the adsorption equilibrium was represented with Langmuir, Freundlich and Temkin isotherm models. The fitting of data for dye sorption onto the Fe3O4@SiO2@Kit-6-NH2 suggested that the Freundlich model gave a better fit than the Langmuir and Temkin models. The results showed that Fe3O4@SiO2@Kit-‌6 nanocomposite modified with amine groups can be used as an alternative low cost adsorbent for removal of anionic pollutants from aqueous solutions.

Keywords

Main Subjects