Preparation Improvement of Functionalized Graphene Oxide with Fe3O4: Adsorption of pb2+ and Pd2+ from Aqueous Solution

Document Type : Original Article

Authors

1 Associated Prof. of Inorganic Chemistry, Department of Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Branch, Islamic Azad University, Tehran, Iran

2 Department of Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Branch, Islamic Azad University, Tehran, Iran, 18155/144

Abstract

In this present study, preparation of graphene oxide is improved. Graphene oxide was obtained with high purity and high interlayer distance in low time via changes in Staudenmaier method. Then, graphene oxide was functionalized with Fe3O4 nano particles. Characterization was carried out by FT-IR and XRD techniques. Then, adsorption of Pb2+ and Pd2+ ions from aqueous solution was investigated using functionalized and no functionalized graphene oxide. Several important parameters in the adsorption were studied such as sorbent mass, contact time, pH, temperature and metallic pollutants amount. The maximum adsorption value of Pb2+ ion were 86.5 and 93% using graphene oxide and magnetic graphene oxide, respectively. While, maximum adsorption value of Pd2+ ion were 63 and 78% using these adsorbents. The experimental results showed that lead and palladium ions adsorption much better fit with the Freundlich and Temkin isotherms. The best model for the adsorption kinetic was shown with the Logergren and Elovich kinetic models. It can be concluded that the magnetic graphene oxide has high adsorption, which can be used as an effective adsorbent for Pb2+ and Pd2+ ions.

Keywords

Main Subjects


[1] M. Jaishankar, T. Tseten, N. Anbalagan, B. B. Mathew and K. N. Beeregowda, Interdiscip Toxicol. 7 (2014) 60.
[2] S. Sharma, S. Rana, A. Thakkar, A. Baldi, R. S. R. Murthy and R. K. Sharma, Journal of Heavy Metal Toxicity and Diseases 1 (2016) 1.
[3] M. Abdel Salam, Int. J. Environ. Sci. Technol. 10 (2013) 677.
[4] R. Gong, Y. Ding, H. Liu, Q. Chen and Z. Liu, Chemosphere 58 (2005) 125.
[5] V. K. Gupta and A. Rastogi, J. Hazard. Mat. 152 (2008) 407.
[6] H. Mohammed, B. Gutti and B. K. Highina, International Journal of Environment 5 (2016) 104.
[7] I. Gehrke, A. Geiser and A. Somborn-Schulz, Nanotechnol. Sci. Appl. 8 (2015) 1.
[8] S. Singh, K. C. Barick and D. Bahadur, J. Hazard. Mat. 192 (2011) 1539.
[9] Y. Xu, C. Li, X. Zhu, W. E. Huang and D. Zhang, Environmental Engineering and Management Journal 8 (2014) 2023. 
[10] H-P. Cong, J-J. He, Y. Lu and S-H. Yu, Small 6 (2010) 169.
[11] G. Li, Z. Zhao, J. Liu and G. Jiang, J. Hazard. Mat. 192 (2011) 277.
[12] J-F. Liu, Z-S. Zhao and G-B. Jiang, Environ. Sci. Technol. 42 (2008) 6949.
[13] J. Wang, S. Zheng, Y. Shao, J. Liu, Z. Xu  and D. Zhu, J. Colloid and Interface Science 349 (2010) 293.
[14] X. Xin, Q. Wei, J. Yang, L. Yan, R. Feng, G. Chen, B. Du and H. Li, Chemical Engineering Journal 184 (2012) 132.
[15] W. Yantasee, C. L. Warner, T. Sangvanich, R. S. Addleman, T. G. Carter, R. J. Wiacek, G. E. Fryxell, C. Timchalk and M. G. Warner, Environ. Sci. Technol. 41 (2007) 5114.
[16] W. Zhang, X. Shi, Y. Zhang, W. Gu, B. Li and Y. Xian, J. Material Chemistry A 1 (2013) 1745.
[17] S. Zhang, Y. Zhang, J. Liu, Q. Xu, H. Xiao, X. Wang, H. Xu and J. Zhou, Chemical Engineering Journal 226 (2013) 30.
[18] L. Cui, Y. Wang, L. Gao, L. Hu, L. Yan, Q. Wei and B. Du, Chemical Engineering Journal 281 (2015) 1.
[19] L. Fan, C. Luo, M. Sun, X. Li and H. Qiu, Colloids and Surfaces B: Biointerfaces 103 (2013) 523.
[20] X. Guo, B. Du, Q. Wei, J. Yang, L. Hu, L. Yan and W. Xu, J. Hazard. Mat. 278 (2014) 211.
[21] X-J. Hu, Y-G. Liu, H. Wang, A-W. Chen, G-M. Zeng, S-M. Liu and Y. M. Guo, Separation and Purification Technology 108 (2013) 189.
[22] J. Shen, Y. Hu, M. Shi, N. Li, H. Hongwei Ma and M. Ye,  J. Physic. Chem. C 114 (2010) 1498.
[23] J. H. Yang, B. Ramaraj and K. R. Yoon, J. Alloys and Compounds 583 (2014) 128.

[24] X. Yang, X. Zhang, Y. Ma, Y. Huang,  Y. Wang and Y. Chen, J. Mater. Chem. 19 (2009) 2710. 

[25] A. l. A, Sherlala , A. A. A. Raman , M. M. Bello and A. Asghar, Chemosphere 193 (2018) 1004.
[26] L. P. Lingamdinne, I. S. Kim, J. H. Ha, Y.-Y. Chang, J. R. Koduru and J. K. Yang, Metals 7 (2017) 225.
[27] Y. X. Ma, W. J. Shao, P. S. Jin, Y. L. Kou and X. Li, Polymer Composites (2018) doi.org/10.1002/pc.25122.
[28] N. Zolfaghari, R. M. A. Tehrani and F. Hooshyar, Journal of water and Wastewater 29 (2018) 81.
[29] G. GhanizadehA. AzariH. Akbari and R. R Kalantary, Journal of Mazandaran University of Medical Sciences 25 (2015) 49.
[30] A. AzariM. Salari, M. H. Dehghani, M. AlimohammadiH. GhaffariK. SharafiN. Shariatifar and M. Baziar, Journal of Mazandaran University of Medical Sciences 26 (2017) 265.
[31] N. Danesh, A. Marjani, M. Ghorbani and M. Hosseini, Journal of Environmental Health Engineering 5 (2017) 1.
[32] A. Naghizadeh and F. Momeni, Journal of Birjand University of Medical Sciences 22 (2015) 27.
[33] A. Khaligh, H. Z. Mousavi and A. Rashidi, J. of Applied Chemistry 11 (2016) 49, in Persian.
[34] Y. Zhan, F. Meng, X. Yang, R. Zhao and X. Liu, Materials Science and Engineering B 176 (2011) 1333.
[35] C. Hontoria-Lucas, A. López-Peinado, J. López-González and R. Martin-Aranda, Carbon 33 (1995) 1585.
[36] S. Sheshmani and M. Arab Fashapoyeh, Acta Chim. Slov. 60 (2013)813.
[37] G. Wang, X. Shen, B. Wang, J. Yao and J. Park, Carbon 47 (2009) I 359.
[38] M. Wojtoniszak and E. Mijowska, J. Nanopart. Res. 14 (2012) 1248