Effect of hydrothermal temperature on the physical and chemical properties of tungsten oxide nanostructures

Document Type : Original Article

Authors

Physics department, Semnan University, Semnan, Iran

Abstract

Tungsten oxide nanostructures have been synthesized by simple, one-step hydrothermal method using sodium tungstate as precursor material. Citric acid and sodium sulfate have been used as surfactant. structural, morphological, chemical bonding, and optical properties of products have been thoroughly investigated by using X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), and Diffuse reflectance spectroscopy (DRS), respectively. The obtained results indicated that the hydrothermal temperature is a key parameter which controls properties of the sample. Phase transition and shape evolution has been observed during temperature increment. Synthesized nanostructures showed wide bad gap and therefore have potential applications such as photochromic material.

Keywords


[1] B. Mehrnoosh, A. Ali, J. Of Applied Chemistry, 10 (1394) 109, in Persian.
[2] Evecan, D., O. Gurcuoglu, and E.O. Zayim, Microelectronic Engineering, 128 (2014) 42.
[3] Wang, S., et al., Journal of Materials Chemistry C, 6(2) (2018) 191.
[4] Gao, X., et al., Materials Letters, 84 (2012) 151.
[5] Wei, S., et al., Ceramics International, 43(2) (2017) 2579.
[6] Herdt, T., et al., Nanoscale, 11(2) (2019) 598.
[7] Tahir, M.B., et al., International Journal of Environmental Science and Technology, 14(11) (2017) 2519.
[8] Zheng, B., et al., Biomaterials Science, 6(6) (2018) 1379.
[9] Chai, Y., et al., Procedia Chemistry, 19 (2016) 113.
[10] Zheng, H., et al., Advanced Functional Materials, 21(12) (2011) 2175.
[11] Bhosale, N.Y., et al., Electrochimica Acta, 246 (2017) 1112.
[12] Wang, X., et al., Materials Letters, 130 (2014) 248.
[13] Wenderich, K., et al., European Journal of Inorganic Chemistry, 2018(7) (2018) 917.
[14] Soo-Min Park, Y.-C.N., and Chunghee Nam, Journal of Nanoscience and Nanotechnology, 17 (2017) 7719.
[15] Bai, S., et al., Journal of Materials Chemistry, 22(25) (2012) 12643.
[16] Cao, S., et al., Materials Letters, 169 (2016) 17.
[17] Adhikari, S. and D. Sarkar, Electrochimica Acta, 138 (2014) 115.
[18] Huang, K., et al., Journal of Physics D: Applied Physics, 41(15) (2008) 155417.
[19] Huang, R., et al., Advanced Powder Technology, 23(2) (2012) 211.
[20] Nagy, D., et al., RSC Advances, 6(40) (2016) 33743.
[21] Hassani, H., et al., Materials in Electronics, 22(9) (2011) 1264.
[22] Díaz-Reyes, J., et al., Superficies y vacío, 21 (2008) 12.
[23] Kumar, V.B. and D. Mohanta, Bulletin of Materials Science, 34(3) (2011) 435.
[24] N. Prabhu, S.A., N. Muthukumarasamy, C. K. Senthilkumaran, Journal of Nanomaterials and Biostructures. 8(4) (2013) 1483.
[25] Nowak, M., B. Kauch, and P. Szperlich, Review of Scientific Instruments, 80(4) (2009) 046107.
[26] Patil, V.B., et al., Ceramics International, 41(3, Part A) (2015) 3845.