Selective ultrasound enhanced removal of anionic dyes from binary mixture using multivariate calibration and central composite design modeling by positively charged hyper branched ammonium functionalized magnetic graphene oxide

Document Type : Original Article


1 Faculty of Chemistry, Semnan University, Semnan, Iran

2 Faculty of Chemistry, Guilan University, Rasht, Iran


Covalently bonded third generation dendrimer to magnetized graphene oxide nanosheets (DMGO), with high adsorption capacity, were synthesized and efficiently used for simultaneous removal of reactive red 195 (RR) and reactive yellow 145 (RY) dyes. The important parameters like initial concentrations of dyes, sorbent mass and sonication time was optimized using central composite design (CCD) combined with response surface methodology (RSM). Because of the severe overlapping spectra of the dyes, at each removal condition, the dyes concentration were obtained by application partial least squares (PLS) as a powerful multivariate calibration method. The optimized parameters were found to be 12.5 min sonication time, 15 mg of sorbent, RR concentration 20.0 mg L-1 and RY concentration 45.0 mg L-1. These optimal condition were achieved the removal percentage of 99.20 and 98.80 % for RR and RY, respectively. In order to evaluate sorption performance, isotherms and kinetics studies were carried out under batch adsorption experiments. The adsorption process follows pseudo-second order reaction kinetic, as well as Langmuir isotherm. The results showed that the sorbent had a maximum adsorption capacity of 53.76 and 73.53 mg g-1 corresponds to RR and RY, respectively.


[1] M. Bhowmik, K. Deb, A. Debnath, B. Saha, Applied Organometallic Chemistry, (2017).
[2] N.H. Singh, K. Kezo, A. Debnath, B. Saha,  Applied Organometallic Chemistry, (2017).
[3] S.K. Garg, M. Tripathi, Environmental monitoring and assessment, 185 (2013) 8909.
[4] X. Ma, P. Chen, M. Zhou, Z. Zhong, F. Zhang, W. Xing, Industrial & Engineering Chemistry Research, (2017).
[5] P. Mohammadi, H. Sheibani, Applied Organometallic Chemistry, (2018).
[6] N.M. Mahmoodi, Environmental monitoring and assessment, 186 (2014) 5595.
[7] R. Li, B. Gao, K. Guo, Q. Yue, H. Zheng, Y. Wang, Bioresource Technology, (2017).
[8] S. Porhemmat, A. Rezvani, M. Ghaedi, A. Asfaram, A. Goudarzi, Applied Organometallic Chemistry, 31 (2017).
[9] B. Rezaei, H. Khosropour, A. Ensafi, A, Analytical Methods, 9 (2017) 267.
[10] I. Arslan, I.A. Balcioǧlu, D.W. Bahnemann, Dyes and pigments, 47 (2000) 207.
[11] B. Liang, Q. Yao, H. Cheng, S. Gao, F. Kong, D. Cui, Y. Guo, N. Ren, A. Wang, Environmental Science and Pollution Research, 19 (2012) 1385.
[12] B. Frindt, J. Mattusch, T. Reemtsma, A.G. Griesbeck, A. Rehorek, Environmental Science and Pollution Research, 24 (2017) 10929.
[13] J. Pooralhossini, M.A. Zanjanchi, M. Ghaedi, A. Asfaram, M.H.A. Azqhandi, Applied Organometallic Chemistry, (2018).
[14] S. Jalali, M.R. Rahimi, M. Ghaedi, A. Asfaram, A. Goudarzi,  Applied Organometallic Chemistry, 32 (2018).
[15] E. Rosales, M. Pazos, M. Sanromán, T. Tavares, Desalination, 284 (2012) 150.
[16] H. Jamshidi, M. Ghaedi, M.M. Sabzehmeidani, A.R. Bagheri, Applied Organometallic Chemistry, (2017).
[17] E. Errais, J. Duplay, F. Darragi, I. M'Rabet, A. Aubert, F. Huber, G. Morvan, Desalination, 275 (2011) 74.
[18] P. Pengthamkeerati, T. Satapanajaru, N. Chatsatapattayakul, P. Chairattanamanokorn, N. Sananwai, Desalination, 261 (2010) 34.
[19] Z. Lotfi, H.Z. Mousavi, S.M. Sajjadi, Rsc Advances, 6 (2016) 90360.
[20] Z. Lotfi, H.Z. Mousavi, S.M. Sajjadi, Microchimica Acta, 184 (2017) 1427.
[21] M. Roosta, M. Ghaedi, N. Shokri, A. Daneshfar, R. Sahraei, A. Asghari, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118 (2014) 55.
[22] Z. Lotfi, H. Zavvar Mousavi, S.M. Sajjadi, Applied Organometallic Chemistry, 32 (2018) 4162.
[23] Y. Xu, Z. Zhang, J. Zheng, Q. Du, Y. Li, Applied Organometallic Chemistry, 27 (2013) 13.
[24] S.J. Tabatabaei Rezaei, A. Mashhadi Malekzadeh, S. Poulaei, A. Ramazani, H. Khorramabadi, Applied Organometallic Chemistry, 32 (2018).
[25] Z. Lotfi, H.Z. Mousavi, S.M. Sajjadi, Analytical Methods, 9 (2017) 4504.
[26] Z. Lotfi, H.Z. Mousavi, S.M. Sajjadi, Microchimica Acta, (2017) 1.
[27] J. Zolgharnein, A. Shahmoradi, J.B. Ghasemi, Journal of Chemometrics, 27 (2013) 12.
[28] C.D. Brown, P.D. Wentzell, Journal of chemometrics, 13 (1999) 133.
[29] H.L. Wu, Y. Li, R.Q. Yu, Journal of Chemometrics, 28 (2014) 476.
[30] J.B. Cooper, C.M. Larkin, M.F. Abdelkader, Journal of Chemometrics, 25 (2011) 496.
[31] F. Stout, M.R. Baines, J.H. Kalivas, Journal of chemometrics, 20 (2006) 464.
[32] M. Razi-Asrami, J.B. Ghasemi, N. Amiri, S.J. Sadeghi, Environmental Monitoring and Assessment, 189 (2017) 196.
[33] A. Rouhollahi, M. Kouchaki, S. Seidi, RSC Advances, 6 (2016) 12943.
[34] Y. Zou, X. Wang, Y. Ai, Y. Liu, Y. Ji, H. Wang, T. Hayat, A. Alsaedi, W. Hu, X. Wang, Journal of Materials Chemistry A, 4 (2016) 14170.
[35] C.-H. Wu, Journal of hazardous materials, 144 (2007) 93.
[36] M. Özacar, I.A. Şengil, Journal of hazardous materials, 98 (2003) 211.
[37] P. Leechart, W. Nakbanpote, P. Thiravetyan, Journal of environmental management, 90 (2009) 912.
[38] S. Netpradit, P. Thiravetyan, S. Towprayoon, Water research, 38 (2004) 71.
[39] N. Dizge, C. Aydiner, E. Demirbas, M. Kobya, S. Kara, Journal of Hazardous Materials, 150 (2008) 737.
[40] B. Xiang, W. Fan, X. Yi, Z. Wang, F. Gao, Y. Li, H. Gu, Carbohydrate polymers, 136 (2016) 30.