Starch-derived magnetic nanoparticles (Fe3O4@C-SO3H): Synthesis, Characterization and Its application on the preparation of dihydropyrano[c]chromenes, 2‑Amino-3-cyano‑4H‑pyrans and 2-amino-4H-chromenes derivatives

Document Type : Original Article

Authors

1 School of Chemistry- Damghan University- Damghan- Iran

2 School of Chemistry, Damghan University, Damghan, Iran

3 School of Chemistry, Damghan University, 36716-41167 Damghan, Iran

Abstract

In this study, a novel biomass and Starch-derived carbonaceous solid acid catalyst (Fe3O4@C-SO3H) that has superparamagnetism with high acid density was successfully prepared for the first time by incomplete hydrothermal carbonization of Starch followed by Fe3O4 grafting and –SO3H groups functionalization. The characterization of physicochemical properties of Fe3O4@C-SO3H NPs was achieved by X-ray diffraction (XRD), Fourier-transform infrared spectra (FT-IR) and Field Emission scanning electron microscope (FESEM). The resulted catalyst contained -SO3H, -COOH, and phenolic -OH groups and exhibited good catalytic activity for the one-pot synthesis of dihydropyrano[c]chromenes, 2‑Amino-3-cyano‑4H‑pyrans and 2-amino-4H-chromenes derivatives (chromenes and pyrans) via multicomponent reactions. High catalytic activity and easy magnetical separation from the reaction mixture are two significant factors for evaluating the performance of Fe3O4@C-SO3H nanoparticles in the organic transformations.

Keywords


[1] S. Kang, J. Ye and J. Chang, Int .Rev. Chem. Eng, (IRECHE). 5 (2013) 133.
 [2] C. Zhang, H. Wang, F. Liu, L. Wang and H. He, Cellulose. 20, (2013) 127.
[3]. D. Lai, L. Deng, Q. Guo and Y. Fu, Energy Environ Sci. 4 (2011) 3552.
[4]. R. Rinaldi, R. Palkovits and F. Schuth, Angew Chem Int Ed Engl. 47 (2008) 8047.

[5]. X. Zheng, S. Luo, L. Zhang and JP. Cheng, Green Chem. 11 (2012) 455. 

[6]. DJ. Ramon and M. Yus, Angew Chem Int Ed Engl. 44 (2005) 1602.

 [7]. W. R. Armstrong, P. A. Combs, A. p. Tempest, S. D. Brown and A. K. Thomas, Chem. Res. 29 (1996) 123.
[8]. G. Feuer, Progress in Medicinal Chemistry, G. P. Ellis, G. P. West, Eds. North-Holland Publishing Company: New York, 10 (1974) 85.
[9]. F. M. Dean, Nature. 200 (1963) 176.
[10]. A. Goel and V. J Ram, Tetrahedron. 65 (2009) 7865.
[11]. H.G. Kathrotiya and M.P. Patel, Med. Chem. Res. 21 (2012) 3406.
[12]. L. Alvey, S. Prado, B. Saint-Joanis, S. Michel, M. Koch, S.T. Cole and F. Tillequin, Y.L. Janin, Eur. J. Med. Chem. 44 (2009) 2497.
[13]. D. Kumar, V.B. Reddy, S. Sharad, U. Dube and S. Kapur, Eur. J. Med. Chem. 44 (2009) 3805.
[14]. T. Symeonidis, M. Chamilos, D.J. Hadjipavlou-Litina, M. Kallitsakis and K.E. Litinas, Bioorg. Med. Chem. Lett. 19 (2009) 1139.
[15]. T. Narender and S. Shweta, Bioorg. Med. Chem. Lett. 19 (2009) 3913.
[16]. P.K. Paliwal, S.R. Jetti and S. Jain, Med. Chem. Res. 22 (2013) 2984.
[17]. S.X. Cai, J. Drewe and W. Kemnitzer, Med. Chem. 9 (2009) 437.
[18]. T.H.V. Huynh, B. Abrahamsen, K.K. Madsen, A. Gonzalez- Franquesa, A.A. Jensen and L. Bunch, Bioorg. Med. Chem. 20 (2012) 6831.
[19]. J.L. Wang, D.X. Liu, Z.J. Zhang, S.M. Shan, X.B. Han, S.M. Srinivasula, C.M. Croce, E.S. Alnemri and Z.W. Huang, Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 7124.
[20]. S. Banerjee, A. Horn, A. Khatri and G. Sereda, Tetrahedr. Lett. 52 (2011) 1878.
[21]. D. Kumar, V.B. Reddy, S. Sharad, U. Dube and S. Kapur, Eur. J. Med. Chem. 44 (2009) 3805.
[22]. H. Eshghi, S. Damavandi and G.H. Zohuri, Synth. React. Inorg. Met. 41 (2011) 1067.
[23]. R.-Y. Guo, Z.-M. An, L.-P. Mo, R.-Z. Wang, H.-X. Liu, S.-X. Wang and Z.-H. Zhang, ACS Com. Sci. 15 (2013) 557.
[24]. K. Gong, H.-L. Wang, J. Luo and Z.-L. Liu, J. Heterocycl. Chem. 46 (2009) 1145.
[25]. J.M. Khurana and A. Chaudhary, Green Chem. Lett. Rev. 5 (2012) 633.
[26]. A. T. Khan, M. Lal, S. Ali and Md. M Khan, Tetrahedron Lett. 52 (2011) 5327.
[27]. Y. Sarrafi, E. Mehrasbi, A. Vahid and M. Tajbakhsh, Chin. J. Catal. 33 (2012) 1486.
[28]. K. Gong, H. L. Wang, J. Luo and Z. L. Liu, J. Heterocycl. Chem. 46 (2009) 1145.
[29]. S. Gurumurthi, V. Sundari and R. Valliappan, E-J. Chem. 6 (2009) 466−472.
[30]. J. M. Khurana and S. Kumar, Tetrahedron Lett. 50 (2009) 4125.
[31]. J. M Khurana, B. Nand and P. Saluja, Tetrahedron. 66 (2010) 5637.
[32]. S. Balalaie, M. Bararjanian, M. Sheikh-Ahmadi, S. Hekmat and P. Salehi, Synth. Commun. 37 (2007) 1097.
[33]. S. Paul, P .Bhattacharyya and A. R. Das, Tetrahedron Lett. 52 (2011) 4636.
[34]. S. Balalaielalaie, M. Bararjanian, A. M. Amani and B. Movassagh, Synlett. 2 (2006) 0263.
 [35]. X. Liu, Z. Zhong, Y. Tang and B. Liang, J. Nanomat. 10 (2013) 1155.
[36]. WS. Mok, MJ. Antal and G. Varhergyi, Ind Eng Chem Res. 31 (1992) 94.
[37]. K. Nakajima and M. Hara, ACS Catal. 2 (2012) 1296.

[38]. Y. Lunxiang and L. Jurgen, Chem. Rev. 107 (2007) 133.

[39]. V. P. Pagore, S. U. Tekale, B.D. Rupnar and R. P. Pawar, J. Chem. Pharm. Res. 7 (2015) 1057.
[40]. G. Brahmachari and B. Banerjee. ACS Sustainable Chem. Eng. 2 (2014) 411.
[41]. S. Jain, D. Rajguru, B. S. Keshwal and A.D. Acharya, ISRN Org. Chem. 2013 (2013) 5
[42]. B.V. Shitole, N. V. Shitole and G. K. Kakde,  J. Chem. 9 (2017) 131.
[43]. M. G. Dekamin, M. Eslami and A. Maleki, Tetrahedron. 69 (2013) 1074.
[44]. S. M. Vahdat1, M. Khavarpour and F. Mohanazadeh. J. Appl. Chem. 9 (2015) 41.
 [45]. H. Kiyani and F. Ghorbani. J. Saudi Chem. Soc.. 18 (2014), 689.