Synthesis of a new Fe3O4 modified with CuV2O6 nanocomposite and application as a high performance photocatalyst in photodegradation of methylene blue

Document Type : Original Article

Authors

1 Department of Chemistry, Faculty of Sciences, University of Gonabad, Gonabad, Iran

2 university of Gonabad

3 university of gonabad

Abstract

In this paper, Fe3O4 modified with CuV2O6 was synthesized for the first time and its efficiency as a photocatalyst was evaluated. The new nanocomposite was characterized using UV-Vis spectrophotometry, X-ray diffraction, Fourier transform infrared spectroscopy and a field emission scanning electron microscope. Then, as a photocatalyst it was tested for methylene blue degradation in the presence of visible light. The results showed that Fe3O4 modified with CuV2O6 is more efficient than unmodified Fe3O4. Its high efficiency is due to the high absorption of visible light by the nanocomposite. Also, the conditions of the test, including the amount of photocatalyst, color concentration and pH of the solution were optimized. The synthesized photocatalyst can degrade methylene blue in the presence of visible light with high efficiency.

Keywords


[1] R. Mohammadzadeh Kakhki, F. Ahsani, J. Mater. Sci.: Mater. Electron, 29(2018)3767.
[2]R. Rahmatolahzadeh, M. Mousavi-Kamazani, S. A. Shobeiri, J. Inorg. Organometal.Polymer. Mater, 27 (2017)313.
[3] M. Mousavi-Kamazani, Z. Zarghami, R. Rahmatolahzadeh, M. Ramezani, Advanced Powder Technology 28(2017) 2078.
[4] M. Mousavi-Kamazani, R. Rahmatolahzadeh, F. Beshkar, J. Inorg. Organometal.Polymer. Mater, 27 (2017) 1342.
[5] A. Khataee, A. Karimi, R.D.C., Soltani, M. Safarpour, Y. Hanifehpour,S. W., Joo, Appl. Catal., A, 488(2014)160.
[6] O. Mekasuwandumrong, P. Pawinrat, P. Praserthdam, J. Panpranot, Chem. Eng. J. 164(2010) 77.
[7] R. Mohammadzadeh Kakhki, F. Ahsani, N. Mir, J Mater Sci: Mater Electron, 27 (2016)11509.
[8]R. Mohammadzadeh Kakhki, Arab. J. Chem. (2014).in press. doi:10. 1016/j.arabjc.2014.11.058.
[9]R. Mohammadzadeh Kakhki, J. Incl. Phenom. Macrocycl. Chem, 82(2015)301.
[10]R. Mohammadzadeh Kakhki, M. Rakhshanipour, Arab. J. Chem (2015) in press. doi.org/10.1016/j.arabjc.2015.07.012.
[11] Gh. Rounaghi, R. Mohamadzadeh Kakhki, and H. Azizi_Toupkanloo, Mater. Sci. Eng. C, 32(2012)172.
[12] R. Mohammadzadeh Kakhki, Russ. J. Electrochem, 49(2013) 458.
[13] R. Mohammadzadeh Kakhki, Russ. J. Applied Chemistry, 89(2016) 480.
[14] R. Mohammadzadeh Kakhki, A.M. Khorrampoor, M. Rabbani, F. Ahsani, J. Mater. Sci. Mater. Electron. 28(2017) 4095.
[15] Z. Ladan, Y. Ramin, N. Mohamad, J. Of Applied Chemistry, 36 (1394) 107, in Persian. 
[16] J.Xie,Y.Li,W.Zhao,L.Bian,Y.Wei, Powder Technol.207(2011)140.
[17] T. Bak, J. Nowotny, M. Rekas, C. Sorrell, Int. J. Hydrogen Energy, 27 (2002) 991.
[18] M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, Chem. Mater. 14 (2002) 2812.
[19] E. Grabowska, J.W. Sobczak, M. Gazda, A. Zaleska, Appl. Catal. B: Environ. 117 (2012) 351.
[20] X. Chen, L. Liu, Y.Y. Peter, S.S. Mao, Science 331 (2011) 746.
[21] G. Liu, X. Duan, H. Li, H. Dong, Mater. Chem. Phys. 115(2009)165.
[22] L. Sun, X. Zhao, Y. Li, P. Li, H. Sun, X. Cheng, W. Fan, J. Appl. Phys. 108(2010)093519.
[23] C.K. Ghosh, S.R. Popuri, T.U. Mahesh, K.K. Chattopadhyay, J.Sol Gel Sci. Technol. 52 (2009)75.
[24] B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, Langmuir.29(2013)939.
[25] D. Y. Fang, C. L. Li, N. Wang, P. Li, P. Yao, Crys. Res. Technol. 48(2013)265.
[26] B. Krishnakumar, B. Subash, M. Swaminathan, Sep. Purif.Technol. 85(2012)35.
[27] R. Velmurugan, K. Selvam, B. Krishnakumar, M. Swaminathan, Sep. Purif. Technol. 80(2011)119.
[28] Y. F. Tu,Q.M. Fu, X. J.Niu, J. P. Sang, Z. J. Tan,G. Zheng, X.W. Zou, Crys. Res. Technol. 48(2013)138