Investigating effect of Graphene Oxide on the morphology and electrochemical properties of Polymer Electrolyte based on Poly(vinylidenefluoride) for lithium-ion batteries

Document Type : Original Article

Authors

1 Department of Chemistry, Amirkabir University of Technology (Polytechnic), Tehran

2 Department of Chemistry, Amirkabir University of Technology (Polytechnic), Tehran Renewable Energy Research Center, Amirkabir University of Technology (Polytechnic), Tehran

Abstract

Solid polymer electrolytes (SPEs) show good structural flexibility and safety to meet the requirements of lithium-ion battery applications. Poly(vinylidene fluoride) (PVDF) is a semi-crystalline polymer which due to its desirable has been considered as promising candidate for fabrication of polymer electrolytes in Li-ion batteries. PEs usually have a low ionic conductivity at room temperature. In this study, in order to eliminate this problem and improve the ionic conductivity improving additives of lithium-ion battery graphene oxide (GO) were investigated. Then, the additive amount was optimized using the Morphology, Tensile strength, ionic conductivity, Li+ ion transference number and electrochemical stability, which determined the optimal amount of (GO). SEM images were shown that SPEs containing GO have more porosity in comparison with GPE without GO. By adding 0.004 wt% GO, the ionic conductivity of the PVDF/GO polymer electrolyte was increased significantly to 3.60 mS cm-1 for the composite and the transference number of Li+ ion was also increased to 0.74. The electrochemical stability of 4.6 V was achieved. The results show that GO not only increased the ionic conductivity of composite membrane but also improved the physical properties of the polymer electrolyte. This study shows that the PVDF/GO polymer electrolyte can be considered as a promising SPE for lithium ion batteries.

Keywords


[1] X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B.W. Sheldon and J. Wu, Advanced Energy Materials 4 (2014) 1300882.
[2] L. Cheng, X.-L. Li, H.-J. Liu, H.-M. Xiong, P.-W. Zhang and Y.-Y. Xia, Journal of The Electrochemical Society 154 (2007) A692.
[3] D. Larcher and J.M. Tarascon, Nature Chemistry 7 (2014) 19.
[4] A.S. ARICÒ, P. BRUCE, B. SCROSATI, J.-M. TARASCON and W.V. SCHALKWIJK, Materials for Sustainable Energy, 148.
[5] V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, Energy & Environmental Science 4 (2011) 3243.
[6] L. Long, S. Wang, M. Xiao and Y. Meng, Journal of Materials Chemistry A 4 (2016) 10038.
[7] E. McCalla, A.M. Abakumov, M. Saubanère, D. Foix, E.J. Berg, G. Rousse, M.-L. Doublet, D. Gonbeau, P. Novák, G. Van Tendeloo, R. Dominko and J.-M. Tarascon, Science 350 (2015) 1516.
[8] D.E. Fenton, Polymer 14 (1973) 589.
[9] W.-S. Young, W.-F. Kuan and Epps, Thomas H., Journal of Polymer Science Part B: Polymer Physics 52 (2014) 1.
[10] R. Miao, B. Liu, Z. Zhu, Y. Liu, J. Li, X. Wang and Q. Li, Journal of Power Sources 184 (2008) 420.
[11] J. Zhang, N. Zhao, M. Zhang, Y. Li, P.K. Chu, X. Guo, Z. Di, X. Wang and H. Li, Nano Energy 28 (2016) 447.
[12] D.-W. Kim, J.-K. Park and H.-W. Rhee, Solid State Ionics 8 (1996) 41.
[13] S. Abbrent, J. Lindgren, J. Tegenfeldt and Å. Wendsjö, Electrochim. Acta 43 (1998) 1185.
[14] Q. Shi, M. Yu, X. Zhou, Y. Yan and C. Wan, Journal of Power Sources 103 (2002) 286.
[15] L. Fan, C.-W. Nan and Z. Dang, Electrochimica Acta 47 (2002) 3451.
[16] G. Jiang, S. Maeda, Y. Saito, S. Tanase and T. Sakai, Journal of The Electrochemical Society 152 (2005) A767.
[17] J. Zhang, X. Zang, H. Wen, T. Dong, J. Chai, Y. Li, B. Chen, J. Zhao, S. Dong, J. Ma, L. Yue, Z. Liu, X. Guo, G. Cui and L. Chen, Journal of Materials Chemistry A 5 (2017) 4940.
[18] W.K. Chee, H.N. Lim, N.M. Huang and I. Harrison, RSC Advances 5 (2015) 68014.
[19] X. Yang, F. Zhang, L. Zhang, T. Zhang, Y. Huang and Y. Chen, Advanced Functional Materials 23 (2013) 3353.
[20] C. Wang, W. Shen, J. Lu and S. Guo, Ionics 23 (2017) 2045.
[21] A. Rahmanian, L. Naji and M. Javanbakht, Solid State Ionics 326 (2018) 27.
[22] A. Sil, R. Sharma and S. Ray, Surface and Coatings Technology 271 (2015) 201.
[23] S. Abbrent, J. Plestil, D. Hlavata, J. Lindgren, J. Tegenfeldt and Å. Wendsjö, Polymer 42 (2001) 1407.
[24] M.Z. Kufian, M.F. Aziz, M.F. Shukur, A.S. Rahim, N.E. Ariffin, N.E.A. Shuhaimi, S.R. Majid, R. Yahya and A.K. Arof, Solid State Ionics 208 (2012) 36.
[25] Q. Xiao, X. Wang, W. Li, Z. Li, T. Zhang and H. Zhang, Journal of Membrane Science 334 (2009) 117.
[26] J. Zhang, Z. Xu, M. Shan, B. Zhou, Y. Li, B. Li, J. Niu and X. Qian, Journal of Membrane Science 448 (2013) 81.
[27] R. Mukherjee, P. Bhunia and S. De, Chemical Engineering Journal 292 (2016) 284.
[28] L. Suo, Y.-S. Hu, H. Li, M. Armand and L. Chen, Nature communications 4 (2013) 1481.
[29] W. Jia, Z. Li, Z. Wu, L. Wang, B. Wu, Y. Wang, Y. Cao and J. Li, Solid State Ionics 315 (2018) 7.
[30] K.M.G. Francis, S. Subramanian, K. Shunmugavel, V. Naranappa, S.S.M. Pandian and S.C. Nadar, Polymer-Plastics Technology and Engineering 55 (2016) 25.
[31] M.S. Khan and A. Shakoor, Journal of Chemistry 2015 (2015) 1.
[32] M.R. Mousavi, M. Rafizadeh and F. Sharif, Iranian Polymer Journal 25 (2016) 525.
[33] M. Kammoun, S. Berg and H. Ardebili, Nanoscale 7 (2015) 17516.
[34] Z. Yusong, X. Shiying, S. Yi, Y. Yaqiong, H. Yuyang and W. Yuping, Advanced Energy Materials 4 (2014) 1300647.
[35] Y.-C. Lu, B.M. Gallant, D.G. Kwabi, J.R. Harding, R.R. Mitchell, M.S. Whittingham and Y. Shao-Horn, Energy & Environmental Science 6 (2013) 750.
[36] J. Liu, X. Wu, J. He, J. Li and Y. Lai, Electrochim. Acta 235 (2017) 500.
[37] M.Y. Zhang, M.X. Li, Z. Chang, Y.F. Wang, J. Gao, Y.S. Zhu, Y.P. Wu and W. Huang, Electrochim. Acta 245 (2017) 752.
[38] F. Deng, X. Wang, D. He, J. Hu, C. Gong, Y.S. Ye, X. Xie and Z. Xue, J. Membr. Sci. 491 (2015) 82.
[39] S.M. Seidel, S. Jeschke, P. Vettikuzha and H.D. Wiemhöfer, Chemical Communications 51(2015) 12048.