Evaluation of antioxidant activity of homo and copolymer of aniline/pyrrole electrosynthesized by DPPH radical

Document Type : Original Article

Authors

1 Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

2 Department of Chemistry, College of Science, Yadegar -e- Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran

Abstract

Antioxidants are molecules that can slow down or prevent the oxidation of other molecules. The role and beneficial effects of antioxidants against many human diseases and foodborne illnesses due to oxidative corruption have attracted much attention in recent years. In this study, synthesis of homo and copolymer of aniline/pyrrole was performed on 2B pencil composite graphite in acetic acid medium containing para toluene sulfonic acid (PTSA) as supporting electrolyte by cyclic voltammetry method and their ability to remove free radical 2,2. -diphenyl-1-picryl hydrazyl (DPPH) have been compared and evaluated. The results indicated that the electrosynthesized polyaniline was more capable of DPPH radical scavenging, which could be due to electrosynthesis of the oxidation state (configuration) of the polyaniline conductive form (Emeraldine Salt (ES)), which was able to remove a greater percentage of DPPH radicals. Also, using electrochemical impedance spectroscopy (EIS), it was found that increasing the aniline ring in the polymer chain decreased the resistance of the charge transfer, thus increasing the reductive property. The structural and morphological of electrosynthesized homo and copolymer have been confirmed by SEM and FTIR.

Keywords


[1] A. C. Martins, L. Bukman, A. M. Vargas, É. O. Barizão, J. C. Moraes, J. V. Visentainer and V. C. Almeida, Food Chem. 138 (2013) 574.
[2] S. Dudonné, X. Vitrac, P. Coutiere, M. Woillez and J.-M. Mérillon, J. Agric. Food. Chem. 57 (2009) 1768.
[3] A. Gliszczyńska-Świgło, Food Chem. 96 (2006) 131.
[4] J. Cheng, X. Chen, S. Zhao and Y. Zhang, Food Chem. 168 (2015) 90.
[5] R. Raudonis, L. Raudone, V. Jakstas and V. Janulis, J. Chromatogr. A 1233 (2012) 8.
[6] R. Tabaraki and F. Ghadiri, J. of Applied Chemistry 10 (2016) 19.
[7] K. I. Berker, K. Güçlü, İ. Tor and R. Apak, Talanta 72 (2007) 1157.
[8] S. E. Çelik, M. Özyürek, K. Güçlü and R. Apak, Talanta 81 (2010) 1300.
[9] N. Sahiner and S. Demirci, React. Funct. Polym. 105 (2016) 60.
[10] H. Gómez, M. K. Ram, F. Alvi, P. Villalba, E. Stefanakos and A. Kumar, J. Power Sources 196 (2011) 4102.
[11] J. Jang, Emissive Materials Nanomaterials, Springer Berlin Heidelberg, Berlin, Heidelberg, (2006) pp. 189.
[12] A. Eftekhari and R. Afshani, J. Polym. Sci., Part A: Polym. Chem. 44 (2006) 3304.
[13] M. Ates, Prog. Org. Coat. 71 (2011) 1.
[14] A. Parsa and S. Ab Ghani, J. Electrochem. Soc. 156 (2009) E105.
[15] L. Zhang and J. Lian, J. Electroanal. Chem. 611 (2007) 51.
[16] A. Bhattacharya and B. N. Misra, Prog. Polym. Sci. 29 (2004) 767.
[17] A. Parsa and S. A. Salout, J. Electroanal. Chem. 760 (2016) 113.
[18] M. E. Letelier, A. Molina-BerrÃos, J. Cortés-Troncoso, J. Jara-Sandoval, M. Holst, K. Palma, M. Montoya, D. Miranda and V. González-Lira, Toxicology in Vitro 22 (2008) 279.
[19] M. Mohadjerani and K. Pakzad, J. of Applied Chemistry 7 (2013) 45.
[20] A. Parsa, M. Sadeghi, M. Maleki, S. Parhizkar and S. Ab Ghani, Electrochim. Acta 127 (2014) 34.
[21] L. Hostert, G. de Alvarenga, M. Vidotti and L. F. Marchesi, J. Electroanal. Chem. 774 (2016) 31.
[22] G. Liang, L. Zhu, J. Xu, D. Fang, Z. Bai and W. Xu, Electrochim. Acta 103 (2013) 9.
[23] C.-C. Hu and C.-H. Chu, J. Electroanal. Chem. 503 (2001) 105.
[24] P. Xu, X. J. Han, C. Wang, B. Zhang and H. L. Wang, Synth. Met. 159 (2009) 430.
[25] L. Niu, Q. Li, F. Wei, X. Chen and H. Wang, J. Electroanal. Chem. 544 (2003) 121.
[26] A. Parsa and S. Ab Ghani, Polymer 49 (2008) 3702.
[27] A. Parsa and S. Ab Ghani, Electrochim. Acta 54 (2009) 2856.
[28] W.-C. Chen, T.-C. Wen, C.-C. Hu and A. Gopalan, Electrochim. Acta 47 (2002) 1305.
[29] M. Zolfaghari, A. Arab and A. Asghari, J. of Applied Chemistry 13 (2019) 37.