Synthesis and spectral characterization of a new binuclear organoplatinum(IV)-tin complex: investigation of cytotoxic effects on the MDA-MB-468 breast cancer and U-87MG glioblastoma cell lines

Document Type : Original Article

Authors

1 Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran 15418, Iran

2 Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), P.O. Box 451951159, Zanjan, Iran

3 Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

The reaction of [PtMe2(4,4'-Me2bpy)] (4,4'-Me2bpy = 4,4'-dimethyl-2,2'-bipyridine) with [SnMe2(NCS)2] in a 1:1 mole ratio led to the formation of [PtMe2(SnMe2NCS)(SCN)(4,4'-Me2bpy)] via dissociation of the Sn-NCS bond. The product has been fully characterized by elemental analyses, UV-Vis, IR, (1H, 13C, 119Sn, 195Pt, HHCOSY, and HSQC) NMR spectroscopy. On the basis of NMR data, the Pt(IV) product of the each contains almost exclusively the kinetic trans isomer corresponding to that of trans oxidative addition of SnMe2(NCS)2. The IR spectrum of complex displays characteristic sharp absorptions resulting from the SCN and NCS groups of Pt-SCN and Sn-NCS units. In vitro anticancer activity of three analogues complexes trans-[PtMe2(SnMe2NCS)(SCN)(4,4'-Me2bpy)], trans-[PtMe2(SnMe2Cl)(Cl)(4,4'-Me2bpy)], and trans-[PtMe2(SnEt2Cl)(Cl)(4,4'-Me2bpy)] were tested against human breast carcinoma (MDA-MB-468) and glioblastoma multiforme (U-87MG) cell lines. The results show that trans-[PtMe2(SnEt2Cl)(Cl)(4,4'-Me2bpy)] revealed higher cytotoxic effect towards both cancer cell lines, which shows the significant role of the alkyl group.

Keywords


[1] P. Espinet, A.M. Echavarren, Angew. Chem. Int. Ed. 43 (2004) 4704.
[2] Q. Chen, Y. Yang, X. Lin, W. Ma, G. Chen, W. Li, X. Wang, Z. Yu, Chem Commun. 54 (2018) 5369.
[3] C.S.A. Fraser, H.A. Jenkins, M.C. Jennings, R.J. Puddephatt, Organometallics 19 (2000) 1635.
[4] D.F. Shriver, P. Atkins, in: P.W. Atkins, T.L. Overton, J.P. Rourke, M.T. Weller, F.A. Armstrong, (Eds.), Inorganic Chemistry, 5th Ed., W.H. Freeman and Company, New York, 2010.
[5] M.S. Holt, W.L. Wilson, J.H. Nelson, Chem. Rev. 89 (1989) 11.
[6] L.A. van der Veen, P.K. Keeven, P.C.J. Kamer, P.W.N.M. van Leeuwen, J. Chem. Soc., Dalton Trans. (2000) 2105.
[7] A.J. Canty, H. Jin, B.W. Skelton, A.H. White, Aust. J. Chem. 52 (1999) 417.
[8] C.J. Levy, R.J. Puddephatt, Organometallics 16 (1997) 4115.
[9] C.J. Levy, R.J. Puddephatt, J. Am. Chem. Soc. 119 (1997) 10127.
[10] C.J. Levy, R.J. Puddephatt, J. Chem. Soc., Chem. Commun. (1995) 2115.
[11] M.C. Janzen, M.C. Jennings, R.J. Puddephatt, Can. J. Chem. 80 (2002) 1451.
[12] C.J. Levy, J.J. Vittal, R.J. Puddephatt, Organometallics 15 (1996) 2108.
[13] M.C. Janzen, M.C. Jennings, R.J. Puddephatt, Organometallics 20 (2001) 4100.
[14] B.Z. Momeni, N. Fathi, M. Moghadasi, A. Biglari, J. Janczak, J. Organomet. Chem. 880 (2019) 368.
[15] F.M. Muggia, A. Bonetti, J.D. Hoeschele, M. Rozencweig, S.B. Howell, Am. Soc. Clin. Oncol. 33 (2015) 4219.
[16] S. Dasari, P.B. Tchounwou, Eur. J. Pharmacol. 740 (2014) 364.
[17] R. Oun, Y.E. Moussa, N.J. Wheate, Dalton Trans. 47 (2018) 6645.
[18] P. Štarha, J. Vančo, Z. Trávníček, Coord. Chem. Rev. 380 (2019) 103.
[21] D. Gibson, J. Inorg. Biochem. 191 (2019) 77.
[22] M. Crespo, J. Organomet. Chem. 879 (2019) 15.
[23] E. Gabano, M. Ravera, E. Perin, I. Zanellato, B. Rangone, M.J. McGlinchey, D. Osella, Dalton Trans. 48 (2019) 435.
[24] A. Bhargava, U.N. Vaishampayan, Expert Opin. Investig. Drugs 18 (2009) 1787.
[25] X. Hu, F. Li, N. Noor, D. Ling, Sci. Bull. 62 (2017) 589.
[26] M.D. Hall, T.W. Hambley, Coord. Chem. Rev. 232 (2002) 49.
[27] E. Gabano, M. Ravera, I. Zanellato, S. Tinello, A. Gallina, B. Rangone, V. Gandin, C. Marzano, M.G. Bottone, D. Osella, Dalton Trans. 46 (2017) 14174.
[28] A.J. Crowe, P.J. Smith, G. Atassi, Chem. Biol. Interact. 32 (1980) 171.
[29] B, Koch, T.S.B. Baul, A. Chatterjee, J. Appl. Toxicol. 28 (2008) 430.
[30] A.J. Crowe, P.J. Smith, C.J. Cardin, H.E. Parge, F.E. Smith, Cancer Lett. 24 (1984) 45.
[31] J.D. Scott, R.J. Puddephatt, Organometallics 2 (1983) 1643.
[32] X. Yin, J.R. Moss, J. Organomet. Chem. 557 (1998) 259.
[33] Y.M. Chow, Inorg. Chem. 9 (1970) 794.
[34] D. Seyferth, E.G. Rochow, J. Am. Chem. Soc. 77 (1955) 1302.
[35] R.H. Hill, R.J. Puddephatt, J. Am. Chem. Soc. 107 (1985) 1218.
[36] M.C. Janzen, M.C. Jennings, R.J. Puddephatt, Inorg. Chem. 40 (2001) 1728.
[37] M.C. Janzen, M.C. Jennings, R.J. Puddephatt, Inorg. Chim. Acta 358 (2005) 1614.
[38] J. Holeček, M. Nádvorník, K. Handlíř, A. Lyčka, J. Organomet. Chem. 315 (1986) 299.
[39] T.P. Lockhart, W.F. Manders, E.M. Holts, J. Am. Chem. Soc. 108 (1986) 6611.
[40] G. Mahmoudi, J. Of Applied Chemistry 14 (2019) 267, in Persian.
[41] M. Wada, R. Okawara, J. Organomet. Chem. 8 (1967) 261.
[42] R.G. Pearson, J. Am. Chem. Soc. 85 (1963) 3533.