Photocatalytic and photoelectrocatalytic degradation of congo red dye using Cu and S co-doped TiO2/SiO2 nanoparticles under the purple LED light irradiation: optimization of operational conditions

Document Type : Original Article

Authors

1 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Chemistry, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

The aim of this study was to synthesize Cu and S co-doped TiO2/SiO2 nanoparticles as novel photo-catalysts under the visible light via sol-gel method. The structural properties of the nanoparticles characterized by XRD, DRS-UV/Vis, FE-SEM, TEM and EDX analyses. The results obtained from XRD showed that both the pure and the modified TiO2 nanoparticles comprised only the Anatase phase. The photocatalytic effect of synthesized nanoparticles in the degradation of congo red (as a model of dye polluted wastewaters), was studied. The operational parameters include the irradiation time, pH, the photocatalyst dosage and the pollutant concentration optimized by the response surface methodology (RSM) using the central composite design (CCD). The findings suggested that the optimized conditions for the irradiation time, pH, photocatalyst dosage and the pollutant concentration were 115.98 min, 4.52, 0.08 g and 13.51 ppm, respectively. The photocatalyst degradation under the optimized conditions reached to the 99.8%. Furthermore, the results confirmed that adding thiourea as the sulphur source and copper nitride as the copper source increased the photocatalytic activity in the visible light range. In addition, the UV-Vis spectrophotometry results showed that the synthesized nanoparticles were efficient under the purple irradiation. Finally, coupling the electricity with the photocatalytic process proved that the electrical current was considerably efficient in decreasing the degradation time of removing the congo red dye from aqueous solutions at the high concentrations.

Keywords


[1] A. Sari, D. Mendil, M. Tuzen and M. Soylak, Chem Eng J. 144 (2008) 1.
[2] O. D. Uluozlu, A. Sari, M. Tuzen and M. Soylak, Bioresour Technol 99 (2008) 2972.
[3] R. A. Anayurt, A. Sari and M. Tuzen, Chem Eng J. 151 (2009) 255.
[4] M. Ahadi, P. Aberoomand Azar; S. Tehrani, M. H. Seyyed Vaghef, J. Of Applied Chemistry, 47 (1397) 24, in Persian.
[5] A. Nozad Golikand, A. Nouri, M Firozi, J. Of Applied Chemistry, 42 (1396) 23, in Persian.
[6] J. Choina, C. Fischer, G.-U. Flechsig, H. Kosslick, V. Tuan, N. Tuyen, N. Tuyen and A. Schulz, J Photochem Photobiol A: Chem 274 (2014) 108.
[7] A. Asfaram, M. Ghaedi, S. Hajati and A. Goudarzi, RSC Adv. 5 (2015) 72300.
[8] M. Antonopoulou, E. Evgenidou, D. Lambropoulou and I. Konstantinou, Water Res 53 (2014) 215.
[9] C. O. Amor, C. Virlan, A. Pui and E. Elaloui, Physica B Condens Matter. 560: (2019) 67.
[10] K. Hashimoto, H. Irie and A. Fujishima, Jpn J Appl Phys 44 (2005) 8269.
[11] M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. Dunlop, J. W. Hamilton, J. A. Byrne and K. O'shea, Appl Catal B. 125: (2012) 331.
[12] R. Liu, F. Yang, Y. Xie and Y. Yu, Appl Surf Sci. 466 (2019) 568.
[13] H. Zangeneh, A. A. Zinatizadeh, S. Zinadini, M. Feyzi, E. Rafiee and D. W. Bahnemann, J Hazard Mater 369 (2019) 384.
[14] M. Nadimi, A. Z. Saravani, M. Aroon and A. E. Pirbazari, Mater. Chem. Phys. 225 (2019) 464.
[15] C. Liu, X. Tang, C. Mo and Z. Qiang, J Solid State Chem 181 (2008) 913.
[16] W. Pingxiao, T. Jianwen and D. Zhi, Mater. Chem. Phys. 103 (2007) 264.
[17] D. B. Hamal and K. J. Klabunde, J. Colloid Interface Sci. 311 (2007) 514.
[18] I. Tbessi, M. Benito, E. Molins, J. LIorca, A. Touati, S. Sayadi and W. Najjar, Solid State Sci.  88 (2019) 20.
[19] L. Pirinejad, A. Maleki, B. Shahmoradi, H. Daraei, J.-K. Yang and S.-M. Lee, J Mol Liq. 279 (2019) 232.
[20] M. Hamadanian, A. Reisi-Vanani and A. Majedi, Appl Surf Sci 256 (2010) 1837.
[21] L. Zhang, Z. Xing, H. Zhang, Z. Li, X. Wu, X. Zhang, Y. Zhang and W. Zhou, Appl Catal, B 180 (2016) 521.
[22] J.-J. Zhang, Z. Wei, T. Huang, Z.-L. Liu and A.-S. Yu, J. Mater. Chem. A 1 (2013) 7360.
[23] C. Zhou, J. Ouyang and B. Yang, Mater Res Bull 48 (2013) 4351.
[24] C. Anderson and A. J. Bard, J. Phys. Chem 99 (1995) 9882.
[25] M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O'Shea, M. H. Entezari and D. D. Dionysiou, Appl Catal B. 125 (2012) 331.
[26] S. Mosleh, M. R. Rahimi, M. Ghaedi and K. Dashtian, Ultrason Sonochem 32 (2016) 387.
[27] A. Ajmal, I. Majeed, R. N. Malik, H. Idriss and M. A. Nadeem, RSC Adv. 4 (2014) 37003.
[28] S. Mosleh, M. R. Rahimi, M. Ghaedi, K. Dashtian and S. Hajati, RSC Adv. 6 (2016) 17204.