Photo-catalysis degradation of methyl orange as pollutant dye using dioxide magnetic Fe3O4/Al2O3/TiO2 nanostructure

Document Type : Original Article


1 Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran

2 Department of Chemical Engineering, Quchan, Iran

3 Department of Chemical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

4 Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran


The application of photo-catalysis technologies using nanomaterials based TiO2 increased as an applied strategy in different industries in the recent years. In this regards and in the presence study, Fe3O4/Al2O3/TiO2 nanostructure with core/shell/shell shape was synthesized and characterized by FT-IR and SEM methods. After confirming of synthesized procedure for magnetic TiO2 nanomaterial, it used for photo-catalysis degradation of methyl orange dye under Uv light. The effective parameters in removal yield for optimization of photo-catalysis systems was investigated. Results showed 100% removal yield for methyl orange under condition of 3.3 gr/lit photo-catalyst at pH=7.0 and the presence of 30 ppm at 60 min was occurred. In addition and for nano-catalyst without between layer 44% yield was occurred. In conclusion, Fe3O4/Al2O3/TiO2 nanostructure showed better photo-catalysis behavior compare to Fe3O4/TiO2 nanostructure.


[1] Y. L.Pang, S. Lim, H.C. Ong, and W.T. Chong, ULTRASONICS SONOCHEMISTRY. 29 (2016) 317.
[2] J. F. Guo, B. Ma, A. Yin, K. Fan, and W.-L. Dai, Applied Catalysis B: Environmental. 101 (2011) 580.
[3] J. Su, Y. Zhang, S. Xu, S. Wang, H. Ding, S. Pan, G. Wang, G. Li, and H. Zhao, Nanoscale. 6 (2014) 5181.
[4] J. Lan, Research on Chemical Intermediates. 41 (2013(.
[5] A. Habibi-Yangjeh, M. Shekofteh-Gohari, Separation and Purification Technology. 184 (2017) 334.
[6] W. Fu, H. Yang, M. Li, L. Chang, Q. Yu, J. Xu, and G. Zou, Materials Letters. 60 (2006) 2723.
[7] W. Jiang, X. Zhang, X. Gong, F. Yan, and Z. Zhang, International Journal of Smart and Nano Materials. 1 (2010) 278.
[8] Y. Ao, J. Xu, D. Fu, L. Ba, and C. Yuan, Nanotechnology. 19 (2008).
[9] B. Tanhaei, A. Ayati, M. Lahtinen, B.M. Vaziri, and M. Sillanpää, Applied Polymer Science. 133 (2016) 43466.
[10] A. Ayati, A. Ahmadpour, F.F. Bamoharram, M. Mänttäri, and M. Sillanpää, Chemosphere. 107 (2014) 163.
[11] J. Q.Ma, S.-B. Guo, X.-H. Guo, and H.-G. Ge, Nanoparticle Research.17 (2015).
[12] Y. Fan, C. Ma, W. Li, and Y. Yin, Materials Science in  Semiconductor Processing. 15 (2012) 582.
[13] L. Hongfei, J. Shengfu, Z. Yuanyuan, L. Ming, and Y. Hao, Chemical Engineering.21 (2013) 569.
[14] N. Abbas, G.N. Shao, S.M. Imran, M.S. Haider, and H.T. Kim, Front. Chem. Sci. Eng, (2016).
[15] J. Liu, S.Z. Qiao, Q.H. Hu, and G.Q. Lu, Small. 7 (2011) 425.
[16] J. Joo, Y. Ye, D. Kim, J. Lee, and S. Jeon, Materials Letters. 93 (2013) 141.
[17] Q. Zhang, G. Meng, J. Wu, D. Li, and Z. Liu, Optical Materials. 46 (2015) 52.
[18] D. Chen, C. Liu, S. Chen, W. Shen, X. Luo, and L. Guo, ChemPlusChem. 81 (2016) 282.
[19] G. Liu, F. He, J. Zhang, L. Li, F. Li, L. Chen, and Y. Huang, Applied Catalysis B: Environmental. (2014) 515.
[20] C. Zhang, H. Chen, M. Ma, and Z. Yang, Journal of Molecular Catalysis A: Chemical. 402 (2015) 10.
[21] X. Huang, G. Wang, M. Yang, W. Guo, and H. Gao, Materials Letters. 65 (2011) 2887.
[22] A.Vazquez, T. Lopez, R. Gomez, Bokhimi, A. Morales, and O. Novarot, Solid State Chemistry. 128(1997) 161.
[23] L. Gomathi Devi, S. Girish Kumar, K. Mohan Reddy, and C. Munikrishnappa, Journal of Hazardous Materials. 164 (2009) 459.
[24] A. Fallah Shojaei, A. Shams-Nateri, and M. Ghomashpasand, Superlattices and Microstructures. 88 (2015) 211.
[25] D. Rajamanickam, M. Shanthi, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 128 (2014) 100.
[26] Z.Q. Li, H.L. Wang, L.Y. Zi, J.J. Zhang, and Y.S. Zhang, Ceramics International. 41 (2015) 10634.