Synthesis of nanosized alumina templates with desired pores using Central Composite Design

Document Type : Original Article


1 Chemical Engineering Department, Urmia University of Technology,Urmia, Iran

2 Chemical Engineering Department, Sahand University of Technology, Tabriz, Iran

3 Faculty of Chemistry, Urmia University, Urima, Iran

4 Chemical Engineering Department, Urima University of Technology, Urima, Iran


In this research, anodizing method at constant temperature of 0oC and in constant current in the phosphoric acid electrolyte was used to synthesize the nano-porous alumina templates with desired pore diameter. A new system for controlling temperature as well as for Creation homogeneous conditions in electrolyte solution has been used. Designing experiments and identifying important variables on the diameters of synthesized alumina pores was carried out using the central composition design and the response surface method was used to evaluate the interaction of the parameters and determine their importance on the diameter of the synthesized porous anodic alumina pores. The intensity of the applied current, the electrolyte concentration and the duration of the anodizing was considered as variable parameters. FE-SEM images were used to determine the diameter of the pores. The main purpose of this research is to provide a model for determining the appropriate laboratory conditions for the synthesis of nano-porous anodic alumina templates with desired pores diameter.


[1] F. Le Coz, L. Arurault, S. Fontorbes, V. Vilar, L. Datas, L. and P. Winterton, Surface Interface Analysis, 42 (4)(2010) 227.
[2] J. Zhang, J. E. Kielbasa, and D. L. Carroll, Materials Chemistry and Physics, 122(1)(2010) 295.
[3] G. D. Sulka, A. Brzozka, L. Zaraska and M. Jaskuła, Electrochimica Acta, 55(14)(2010) 4368.
[4] L. Zaraska, M. Jaskuła, and G. D. Sulka, Materials Letters, 171(2016) 315.
[5] A. Mozalev, H. Baccar and A. Abdelghani, Procedia Engineering, 168(2016) 1188.
[6] G.E.J. Poinern, N. Ali, and D. Fawcett, Materials, 4(2011) 487.
[7] A. Santos, L. Vojkuvka, J. Pallares, J. Ferre-Borrull and L. F. Marsal, Journal of Electroanalytical Chemistry, 632(2009) 139.
[8] L. Zaraska, W. J. Stepniowski, Jaskula, M. and G. D. Sulka, Applied Surface Science, 305 (2014) 650.
[9] M. P. Proenca, C. T. Sousa, D. C. Leitao, J. Ventura, J. B. Sousa and  J. P. Araujo,
Journal of Non-Crystalline Solids, 354(2008) 5238.
[10] S. Ono, M. Saito and H. Asoh, Electrochimica Acta, 51(2005) 827.
[11] V. Sadasivan, C. P. Richter, L. Menon, and P. F. Williams, American Institute of Chemical Engineers Journal, 51(2)(2005) 649.
[12] D. Mankotia1, Y. C. Sharma, and S. K. Sharma, International Journal of Recent Research, 1(2)(2014) 171.  
[13] L. Zaraska, G. D. Sulka and M. Jaskula, Surface and Coatings Technology, 205(2010) 2432.
[14] A. M. Abd-Elnaiem and A. Gaber, International Journal of Electrochemical Science, 8(2013) 9741.
[15] J. Zhang, J. E. Kielbasa and D. L. Carroll, Materials Chemistry and Physics, 122(2010) 295.
[16] T. Kikuchi, D. Nakajima, J. Kawashima, Sh. Natsui and R. O. Suzuki, Applied Surface Science, 313(2014) 276.
[17] A. Belwalkar, E. Grasing, W. V. Geertruyden, Z. Huang and W. Z. Misiolek, Journal of Membrane Science, 319(2008) 192.
[18] A. Haghighi Asl, A. Ahmadpour, N. Fallah, Journal of Applied Chemistry, 42 (2017) 253, in Persian.
[19] F. Tadayon, R. Jamshidi, P Jamshidpour, Journal of Applied Chemistry, 49 (2019) 53.
[20] I. Vrublevsky, V. Parkoun, J. Schreckenbach and W. A. Goedel, Applied Surface Science, 252 (2006) 5100.
[21] L. Zaraska, G. D. Sulka and M. Jaskula, Surface and Coatings Technology, 204(2010) 1729.