Formulation design, preparation and characterization of drug carrier polysaccharide nanocomposite containing Curcumin

Document Type : Original Article

Authors

1 Department of Chemistry, University of Ayatollah Alozma Boroujerdi, Boroujerd, , Iran

2 null

Abstract

In this research, with the aim of improve the loading efficiency and particle size Chitosan (CS)-Montmorillonite (MMT) nanocomposite were prepared using a ionic gelatinization method for controlled delivery of curcumin. Different formulation and processing variables (Cs concentration, MMT percentage, surfactant concentration, drug amount and sonication time) were used to determine the optimal formulation.
Polysaccharide concentration, surfactant concentration and sonication time had higher effect on particle size.
MMT addition significantly enhanced the entrapment efficiency of Curcumin and the optimal value for MMT was 3 w%. Also, the increase in drug amount (mg/ml) resulted in the increase in entrapment efficiency.
Physicochemical characteristics of optimal formulation were determined in terms of entrapment efficiency, release profile, Size, Zeta potential, surface morphology and FTIR spectra. Formulation 2A with a particle size of 23.8-31.3 nm, a loading efficiency of 93.71% and a Zeta potential of -73.38 ± 0.88 m were selected as the optimal formulation. SEM and FTIR studies revealed spherical morphology and lack of chemical interaction between nanosystem and drug. The in vitro release study showed that Curcumin had a slow and sustained release profile at basic pH 7.4, which significantly increased at acidic pH of 4.5. The maximum release of the drug from nanocomposite was 80% at 37°C, pH 4.5 after 24 hours.

Keywords


[1] A.C. Anselmo, and S. Mitragotri, J Control Release, 190 (2014) 15.
[2] E. K. Lim, et al, Pharmaceutic, 5 (2013) 294.
[3] E. Pinonn-Segundo N. Mendoza-Muñoz and D. Quintanar-Guerrero, Nanoparticles as Dental Drug-Delivery Systems, Nano biomaterials in Clinical Dentistry, 475 (2013).
[4] N. Sanko, H. Marianne, R. Morten and S. Gro, European J. Pharmaceutics and Biopharmaceutics, 77 (2011) 75.
[5] V.Pencheva, E. Margaritova, M. Borinarova, M. Slavkova, D. Momekova, P. D. Petrov, Carbohydrate Poly, 183 (2018) 165.
[6] A.E. Krausz, B.L. Adler, V. Cabral, M. Navati, J. Doerner and R. Charafeddine, J. Nanomedicine, 11 (2015) 195.
[7] G. Devanand Venkatasubbu, T.Anusuya, Int. J. Biolog. Macromole, 98 (2017) 366.
[8] G. Flora, D. Gupta and A. Tiwari, J. Critic. Rev, 30 (2013) 331.
[9] L. Banik, P. Fattahi and J. L. Brown, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 8 (2016) 271.
[10] D.E. Said, L.M. Elsamad and Y.M. Gohar. Parasitol Res., 111 (2012) 545.
[11] K. Nagpal, S.K Singh and D.N. Mishra, Chemical & pharm bull, 58 (2010) 1423.
[12] L. Mazzarino, Ch. Travelet, S. Ortega-Murillo, I. Otsuka and I. J. Pignot-Paintrand, Coll. Interf. Sci, 370 (2012) 58.
[13] T.M.P. Le, V.P. Pham, T.M.L. Dang, T.H. La, T.H. Le, Q.H. Le, Adv. Nat. Sci: Nano­­­­ sci. Nano techno, 4 (2013) 1.
[14] W.u. Tzong-Ming and Wu. Cheng-Yang, Polymer Degradation and Stabil­ity, 91 (2006) 2198.
[15] H. Ferfera-Harrar, D. Berdous, T. Benhalima, Poly. Bulletin, 75 (2018) 2819.
[16] J.M. Hutchinson, S. Montserrat, F. Roma, P. Corte, L. Campos Departament de Maquines i Motors Termics, ETSEIAT, Universitat Polite cnica de Catalunya, 08222 Terrassa, Spain, (2006).
[17] M. Fathy and A. Ahmed, Use of alginate/montmorillonite nanocomposites as a drug delivery system for curcumin, Thesis, (2015).
[18] Dos. Santosa, B.R. B. Bacalhaub, F. Santos Pereira, T.d. Fonseca. C. Souzab and R. Faez, Carbohydrat. Poly, 127 (2015) 340.
[19] C.M.O. Müller, J.B. Laurindo and F. Yamashita, Carbohydrat. Poly, 89 (2012) 504.
[20] C.h. Saikia, A. Hussain, A. Ramteke, H.K. Sharma and T.K. Maji, J. Microencapsul, 32 (2015) 29.
[21] A. Anitha, S. Maya, N. Deepa, K.P. Chennazhi, S.V. Nair, H. Tamura and R. Jayakumar, Carbohydrat. Poly, 83 (2011) 452.
[22] B.R Shah, Y. Li. W. Jin, Y. An, L. He, Zh .Li, W. Xu and B. Li. Food Hydrocol; 52 (2016) 369.
[23] M.L. Zweers, D.W. Grijpma and G.H. Engbers, J. Biomed. Mater. Res. B, 66 (2003) 559.
[24] Y. Krishnamachari, P. Madan and S. Lin, Int. J. Pharm., 338 (2007) 238.
[25] D. Quintanar-Guerrero, H. Fessi and E. All mann, et al., Int. J. Pharm., 143 (1996) 133.
[26] L.S. Wan and P.F. Lee, J. Pharm. Sci., 63 (1974) 136.
[27] Y.Y. Yang and T.S. Chung, Biomaterials, 22 (2001) 231.
[28] S. Mao, Y. Shi and L. Li, Eur. J. Pharm. Biopharm, 68 (2008) 214.
[29] X. Su, G. Zang, K. Xu, J.Wang, C. Song and P. Wang, Poly Bull; 60 (2008) 69.
[30] J. Zheng, J. Shan, Z. Fan and K. Yao, Technol-Mater Sci, 26 (2011) 628.
[31] A. Anitha, S. Maya, N. Deepa, K.P. Chennazhi, S.V. Nair and H. Tamura. Carbohydrat. Poly, 83 (2011) 452.
[32] K. Wilpiszewska, A.K. Antosik and T. Spychaj, Carbohydrat Poly, 128 (2015) 82.
[33] S.h. Jahanizadeh, F. Yazdian, A. Marjani, M. Omidi, H. Rashedi, Int. J. Biolog. Macromol, 105 (2017) 757.
[34] B.R. Shah, Y. Li, W. Jin, Y. An, L. He, Zh. Li and W. Xu, Food Hydrocol 52 (2016) 369.