Green and efficient synthesis of benzoquinoline compounds by a three-component reaction in the presence of a cellulose-based sulfonated magnetic nanocatalyser under ultrasonic conditions

Document Type : Original Article

Authors

1 Pharmaceutical Chemistry, Science Campus - Faculty of Chemistry, K. N. Toosi university

2 Faculty member

Abstract

In this study, a green and efficient method for the synthesis of benzoquinoline compounds has been described through the reaction of malononitrile derivatives with different aldehydes and naphthylamine in the presence of heterogeneous functionalized nanocellulose catalyst with sulphonic groups (Fe3O4@ Cellulose-OSO3H) is described. Synthesis of benzoquinoline is proceed very well in the presence of Fe3O4@ Cellulose-OSO3H under solvent-free conditions using ultrasonic waves. The Fe3O4@ Cellulose-OSO3H can be recoverd and reused at least four consecutive times under optimized conditions with a slight decrease in its catalytic activity. High to quantitative yields of the desired products, low loading of the catalyst, short reaction times at ambient temperature, reusability of the catalysts, and avoiding the use of toxic solvents are significant advantages of this green protocol.

Keywords


[1] J. Zhu, H. Bienaymé, Multicomponent Reactions. In wiley, weinheim (2005).
[2] L. H. Choudhury, T. Parvin, Tetrahedron 67 (2011) 8213.
[3] A. Dömling, Chem. Rev. 106 (2006) 17.
[4] T. Kametani, H. Kasai, In Studies in Natural Products Chemistry, Atta-ur-Rahman, Ed, Elsevier Scientific Publishing Co.: Amsterdam, 3 (1989) p385.
[5] F. S. Yates, In Comprehensive Heterocyclic Chemistry, A. R. Katritzky, C. W. Rees, Ed, Pergamon Press, Oxford, UK, 2 (1984) p511.
[6] M. Sainsbury, In Rodd’s Chemistry of Carbon Compounds, S. Coffey, Ed, Elsrvier Scientific Publishing Co. Amsterdam, Part G (1978) p171.
[7] S. P. Shirame, S. Y. Jadhav, R, B.; Bhosale, Asian. J. Pharm. Clin. Res, 7 (2014) 163.
[8] H. K. Yang, Y. F. Tong, S. Wu, Chin. Chem. Lett. 27 (2016) 349.
[9] A. Metwally, M. Abdel-Aziz, M. Lashine, I. Husseiny, H. Badawy, Bioorg. Med. Chem. 14 (2006) 8675.
[10]  F. Palluotto, A. Sosic, O. Pinato, G; Zoidis, M. Catto, C. Sissi, B. Gatto, A. Carotti, Eur. J. Med. Chem. 123 (2016) 704.
[11] M. Shiri, A. N. Arani, Z. Faghihi, S.A. Shintre, N.A. Koorbanally, Org. Chem. Res. 2 (2016) 113.
[12] A. M. Radini, M.Y. Elsheikh, E. M. El-Telbani, R. E. Khidre, Org. Chem. Res, 2 (2016) 113.
[13] M. Jain, S. Khan, B. Tekwani, M. Jacob, S. Singh, P. Singh, R. Jain, Bioorg. Med. Chem. 13 (2005) 4458.
[14] J. Sharma, IJPRBS. 4 (2015) 130.
[15] A. Watson, J. Fleet, N. Asano, R. J. Molyneux, R. Nugh, J. Phytochem. 56 (2001) 265.
[16]  M. Gutiérrez, B. Arévaloa, G. Martínezb, F. Valdésa, G. Vallejosc, U. Carmonad, A. San Martine, J. Chem. Pharm. Res. 7 (2015) 351.
[17] W. Deady, J. Desneres, A. J. Kaye, Bioorg. Med. Chem. 9 (2001) 445.
[18] G. R. Newkome, W. W. Paudler, Contemporary Heterocyclic Chemistry. Syntheses, Reactions, and Applications, Wiley: New York (1982) p200.
[19] T. L. Gilchrist, Heterocyclic Chemistry, 2nd Ed, Longman Scientific & Technical: Essex, UK (1992) p152.
[20] J. A. Joule, K. Mills, G. F. Smith, Heterocyclic Chemistry, 3rd Ed, Chapman & Hall: London (1995) p120.
[21] N. G. Kozlov, L. I. Basalaeva, Russian J. Org. Chem. 39 (2003) 718.
[22] N. G. Kozlov, R. D. Sauts, K. N. Gusak, Russ. J. Org. Chem. 36 (2000) 531.
[23] H. H. Otto, O. Rinus, H. Schmelz, Monatsh. Chem. 110 (1979) 115.
[24] K. V. Komarov, N. D. Chkanikov, S. V. Sereda, M. Yu. Antipin, Yu. T. Struchkov, A. F. Kolomiets, A. V. Fokin, Izv. Akad. Nauk SSSR, Ser. Khim. 8 (1988) 1917.
[25] S. Kambe, K. Saito, Synthesis, (1980) 366.
[26] D. R. Anderson, N. W. Stehle, S. A. Kolodziej, E. J. Reinhard, PCT Int. Appl. 2004, WO 2004055015 A1 20040701, Chem. Abstr., 141 (2004) 89018.
[27] K. V. Komarov, N. D. Chkanikov, M. V. Galakhov, A. F. Kolomiets, A. V. Fokin, J. Fluorine Chem. 47 (1990) 59.
[28] S. Tu, R. Jia, J. Zhang, Y. Zhang, B. Jiang J. Heterocyclic Chem., 44 (2007) 735.
[29] A. Maleki, S. Azadegan, Inorg. Nano‐Met. Chem. 47 (2017) 917.
[30] A. Maleki, M. Aghaei, R. Paydar, J. Iran. Chem. Soc. 14 (2017) 485.
[31] H. Veisi, A. Sedrpoushan, B. Maleki, M. Hekmati, M. Heidari, S. Hemmati, Appl. Organomet. Chem. 29 (2015) 834.
[32] A. Maleki, M. Aghaei, N. Ghamari, M. Kamalzare, Int. J. Nanosci. Nanotech. 12 (2016) 215.
[33] A. Maleki, M. Aghaei, N. Ghamari, Appl. Organomet. Chem. 30 (2016) 939.
[34] A. R. Hajipour, N. S. Tadayoni, Z. Khorsandi, Appl. Organomet. Chem. 30 (2016) 590.
[35] H. Naeimi, M. Moradian, Appl. Organomet. Chem. 27 (2013) 300.
[36] A. Maleki, N. N. Yeganeh, Appl. Organomet. Chem. (2017) 3814.
[37] G. Thoorens, F. Krier, B. Leclercq, B. Carlin, B. Evrard, Int J Pharm. 473 (2014) 64.