Experimental and molecular simulation evaluation of the organic-metal frameworks in removing sulfur compounds from petroleum-gasoline cuts in order to produce clean fuel

Document Type : Original Article


Department of Chemistry,University of Zanjan , Zanjan, Iran


The presence of sulfur compounds and mercaptans in oil cuts causes environmental contamination and leads to corrosion in transmission lines and storage tanks. Therefore, it is necessary to reduce the amount of sulfur and mercaptans in oil cuts to international standards. Metal- organic frameworks are a class of nano-porous adsorbents that have been identified for storing and separating gases and utilizing energy and environmental regeneration. This paper using experiments and molecular simulations, attempts to investigate the removal of sulfur compounds from gasoline. In experimental desulfurization tests thiophene and benzothiophene, which are aromatic sulfur compounds in gasoline were used as a model. The desulfurization process was selected by some metal-organic frameworks with 0.05g of mass for 8 hrs at 308K. In the molecular simulation part, a model was defined for gasoline that included a binary mixture of normal-hexane/benzothiophene, normal-hexane/thiophene, and normal-hexane/ethanethiol. The amount of adsorption and selection of sulfur compounds in metal-organic frameworks was investigated. The best separation in the mixture of normal-hexane and sulfur compounds was related to a molar fraction of 0.01 at 318K, which was equal to 12602.92 for benzothiophene and normal-hexane mixtures, for the mixture of thiophene and normal-hexane is 628.49, and obtained for the mixture of ethanethiol and normal hexane at 50.699. The results of adsorption and adsorption diagrams of sulfur compounds on metal-organic frames-in both experimental and simulation sections showed that MIL-47(V) had the highest selectivity and adsorption for sulfur compounds. In both experimental and molecular simulations, it was found that metal-organic frameworks could be a good detergent for sulfur compounds to obtain clean fuel.


[1] M. Soleimani, A. Bassi, A. Margaritis, Biotechnology Advances, 25 (2007) 570.
[2] F. Theakston, Air Quality Guidelines, 2nd Edition, World health organization regional office for europe copenhagen, WHO regional publications, European Series, (2000), 91.
[3] P. J. Koplan, Toxicological profile for sulfur dioxide, U.S. department of health and human services, Public health service, Agency for toxic substances and disease registry, (1998), 60.
[4] W. Wang, S. Wang, H. Liu, Z. Wang. Fuel. 86 (2007) 2747.
[5] T. Henrik, S. Bjerne, E. Franklin, Catalysis. Springer Berlin Heidelberg, (1996), 169.
[6] R. C. Santana, P. T. Do, M. Santikunaporn, W. E. Alvarez, J. D.Taylor, E. L.Sughrue, D. E. ResascoFuel85 (2006) 643.
[7] I. V. Babich, J. A. Moulijn, Fuel. 82 (2003) 607.
[8] F. Paulino, F. Process for the removal of sulfur from petroleum fractions, U.S. Patent, 5 (1996) 582.
[9] A. W. Bhutto, R. Abroa, S. Gao, T. Abbas, X. Chen, G. Yu, J. Taiwan Instit. Chem. Eng., 62 (2016) 84.
[10] M. J. Rosseinsky, Microporous Mesoporous Mater., 73 (2004) 15.
[11] R. Zou, A. I. Fattah, H. Xu, Y. Zhao, D. D. Hickmott, Cryst. Eng. Comm., 12 (2010) 1337.
[12] S. Bourrelly, P. L Llewellyn, C. Serre, F. Millange, T. Loiseau, G. Ferey, J. Am. Chem. Soc. 127 (2005) 13519.
[13] T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. T. M. Henry, T. Bataille, G. Férey, Chemistry-A Europran Journal, 10 (2004) 1373.
[14] C. Serre, S. Bourrelly, A. Vimont, N. A. Ramsahye, G. Maurin, P.L. Llewellyn, M. Daturi, Y. Filinchuk, O. Leynaud, P. Barnes and G. Férey, Adv. Mater., 2007, 19, 2246.
[15] F. Paesani, J. Phys. Chem. C 117 (2013) 19508.
[16] A. Gupta, S. Chempath, M. J. Sanborn, L. A. Clark, R. Q. Snurr, Mol. Simul. 29 (2003) 29.
[17] S. Hamad, S. R.G. BalestrA, R. Bueno-Perez, S. Calero, A. R. Ruiz-Salvador, Journal of Solid State Chemistry, 223 (2015) 144.
[18] C. E. Wilmer, K. C. Kim, R. Q. Snurr, J. Phys. Chem. Lett. 3 (2012) 2506.
[19] D. Dubbeldam, R. Krishna, R. Q. Snurr, J. Phys. Chem. C 113 (2009) 19317.
[20] C. Campañá, B. Mussard, T. K. Woo,  J. Chem. Theory Comput., 5 (2009) 2866.
[21] D. Wolf, P. Keblinski, S. R. Phillpot, J. Eggebrecht, J. Chem. Phys. 110 (1999) 8254.
[22] C. D. Wick, M. G. Martin, J. I. Siepmann, J. Phys. Chem. B 104 (2000) 8008.
[23] R. Neeraj, L. Siepmann, J. Phys. Chem. B 117 (2012) 273.
[24] N. Lubna, G. Kamath, J. J. Potoff, N. Rai, J. I. Siepmann, J. Phys. Chem. B 109 (2005) 24100.
[25] N. Bentenitis, P. E. Smith, J. Phys. Chem. B 113 (2009) 12306.
[26] M. A. Rezvani, M. Oveisi, M. A. Asli, J. Mol. Catal. A Chem. 410 (2015) 121.
[27] M. A. Rezvani, S. Khandan, N. Sabahi, Energy and Fuels. 31 (2017) 5472.
[28] M. A. Rezvani, M. A. Asli, S. Khandan, H. Mousavi, Z. S. Aghbolagh, Chem. Eng. J. 312 (2017) 243.
[29] D. Y. Peng, D. B. Robinson, Ind. Eng. Chem. Funds. 15 (1976) 59.
[30] Z. Ahadi, M. Shadman, S. Yeganegi, F. Asgari, J. Mol. Model. 18 (2012) 2981.