Photocatalytic activity investigation of ZnO-TiO2 stabilized on ZSM-5 zeolite for Methyl Orange degradation

Document Type : Original Article

Authors

1 Assistant Professor in Inorganic Chemistry/ payame noor university

2 Assistant professor of Chemical Engineering, Department of Chemical Engineering, Faculty of Engineering, Ilam University, Ilam, Iran

Abstract

The nano photocatalytic ZTOZ was prepared from ZnO and TiO2 stabilization on ZSM-5 zeolite surface and its catalytic activity was investigated to remove Methyl Orange organic dye and was compared with zeolite-ZnO and zeolite- TiO2 nanocatalysts. The properties of the catalysts were determined using BET, X-ray diffraction (XRD), energy dispersive (EDAX) analysis, and scanning electron microscopy (SEM). The images and spectra obtained showed that Titania and ZnO nanoparticles were well placed on the ZSM5 zeolite surface, and the average size of zinc oxide and titania nanocrystals was calculated using the Debye–Scherrer formula, which was 19.13 nanometers. The mean diameter of the ZTOZ photocatalyst cavity was 1.22 nm, which shows the nanoporous photocatalyst synthesized. The Photocatalytic removal of the dye was performed as a function of pH in the range of 3 to 9 and the initial concentration of dye in concentrations of 5-25 mg / L and the catalyst content in values of 0.1 to 0.4 g / L and at ambient temperature. Then it was modeled by a quadratic polynomial equation. The results showed that the amount of removed dye (response) depends on the pH and initial concentration of the dye. The RSM (surface response methodology) method was used to optimize and find optimum amounts for organic dye degradation in a pyrex glass cylindrical reactor with a height of 460 mm and a volume of 1 L. Also, the kinetic of photocatalytic reactions were studied with the assumptions that they follow the Langmuir-Hinchlood equation and the first-order reaction.

Keywords


[1] A. Nodehi, H. Atashi and M. Mansouri, J. Disper. Sci. Technol. 40 (2019) 766.
[2] M. Mansouri, M. Tanzifi, H. Lotfi and M. Nademi, SCSCC6. 18 (2017) 153.
[3] M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahneman, Chem. rev. 95 (1995) 69.
[4] S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy and V. Murugesan, Sol. Energy Mater. Sol. Cells. 77 (2003) 65.
[5] J. C. Lee, S. Park, H. J. Park, J. H. Lee, H. S. Kim and Y. J. Chung, J. Electroceram. 22 (2009) 110.
[6] J. G. Yu and X. X. Yu, Environ. Sci. Technol. 42 (2008) 4902.
[7] S. Jayakumar, P. V. Ananthapadmanabhan, K. Perumal, T. K. Thiyagarajan, S. C. Mishra, L. T. Su and A. I. Y.  Tok, J. Guo, Mater. Sci. Eng. B 176 (2011) 894.
[8] O. K. Mahadwad, P. A. Parikh, R. V. Jasra and C. Patil, Bull. Mater. Sci. 34 (2011) 551.
[9] M. Khatamian, S. Hashemian and S. Sabaee, Mater. Sci. Semicond. Process. 13 (2010) 156.
[10] A. Gnanaprakasam, V.M. Sivakumar, P.L. Sivayogavalli and M. Thirumarimurugan,  Ecotoxicol Environ Saf. 30 (2015) 121.
[11] S. Bhattacharjee, S. H. Sarkar, U. Raybarman and J. Panja, IJIRSET. 2 (2016) 284.
[12] W. Panpa, P. Sujaridworakun and S. Jinawath, Appl. Catal. B. 80 (2008) 271.
[13] A. N. Rao, B. Sivasankar and V. Sadasivam, J. Hazard. Mater. 166 (2009) 1357.
[14] A. Jonidi-Jafari, M. Shirzad-Siboni, J. K. Yang, M. Naimi-Joubani and M. Farrokhi, J. Taiwan. Inst. Chem. Eng. 50 (2015) 100.
[15] C. T. Chang, J. J. Wang, T. Ouyang, Q. Zhang and Y. H. Jing, Mater. Sci. Eng. B. 196 (2015) 53.
[16] C. Bouvy, W. Marine, R. Sporken and B. L. Su, Chem. Phys. Lett. 428 (2006) 312.
[17] R. Karimi, B. Bayati, N. C. Aghdam, M. Ejtemaee and A. A. Babaluo, Powder Technol. 229 (2012) 229.
[18] X. Zhang, J. Wang, H. Liu, C. Liu and K. Yeung, Sep. Purif. Techno. 32 (2003) 151.
[19] M. G. Alalm, S. Ookawara, D. Fukushi, A. Sato and A. Tawfi, J. Hazard. Mater. 302 (2016) 225.
[20] D. Fukushi, A. Sato, T. Kusaka, Y. Kataoka and K. Kobayashi, ECS. Trans. 61 (2014) 43.
[21] M. Mansouri, H. Atashi, M. M. Khalilipour, N. Setareshenas and F. Shahraki, J. Korean Chem. Soc. 57 (2013) 769.
[22] F. Shahrezaei, Y. Mansouri, A. A. L. Zinatizadeh and A. Akhbari, Powder Technol. 221 (2012) 203.
[23] D. C. Montgomery, Design and Analysis of Experiments. Wiley, New York, 1991.
[24] B. K. Korbahti and M. A. Rauf, Chem. Eng. J. 136 (2008) 25.
[25] A. R. Khataee, M. Zarei and L. Moradkhannejhad, Desalination. 258 (2010) 112.
[26] M. A. Behnajady, N. Modirshahla and R. Hamzavi, J. Hazard. Mater. 133 (2006) 226.
[27] N. Setarehshenas, S. H. Hosseini, M. N. Esfahany, M. Mansouri and G. Ahmadi, Journal Of Applied Chemistry, 13 (2018) 53. (in Persian)
[28] C. R. Huang and H. Y. Shu, J. Hazard. Mater. 41 (1995) 47
[29] S. Chakrabarti and B.K. Dutta, J. Hazard. Mater. 112 (2004) 269.
[30] M. Firouzi, A. Nouri and A. Nozadgolikand, Journal Of Applied Chemistry, 12 (2017) 23. (in Persian)
[31] J. C. Chou and L. P. Liao, Thin. Solid. Films. 476 (2005) 157.
[32] M. Muruganandham, N. Shobana and M. Swaminathan, J. Mol. Catal. A: Chem. 246 (2006) 154.
[33] A. Maleki, M. Safari, B. Shahmoradi, Y. Zandsalimi, H. Daraei and F. Gharibi, Environ. Sci. Pollut. Res. 22 (2015) 16875.
[34] Z. Ezzeddine, I. Batonneau-Gener, Y. Pouilloux, H. Hamad and Z. Saad, Colloids Interfaces. 2 (2018) 22.
[35] V. N. Nguyen, D. T. Tran, M. T. Nguyen, T. T. T. Le, M. N. Ha, M. V. Nguyen and T. D. Pham, Res Chem Intermed 44 (2018) 3081.