Investigation of Anti cancer properties of Schiff base compound based on 4, 5, 6, 7-tetrahydrobenzo[d]thiazole

Document Type : Original Article


Tehran, University of Tehran, Campus of Sciences, Faculty of Chemistry


In this study, a new Schiff base compound was synthesized using the condensation reaction of 2-hydroxy-1-naphthaldehyde with 4, 5, 6, 7-tetrahydrobenzothiazole-2, 6-diamine. The product was characterised by using FT-IR and 1H-NMR techniques. The interaction of this compound with DNA extracted from calf thymus (ct-DNA) was studied by the fluorescence emission and circular dichroism (CD). In addition, the binding ability and the interaction type of the corresponding Schiff base with ct-DNA was determined by monitoring of DNA denaturation data and bonding and thermodynamic parameters of the interaction of compound with DNA. Finally, the anti-cancer properties of this compound were investigated on two categories of HepG2 and MCF-7 cancer cells. The results showed the groove binding of the compound to DNA and the IC50 values of the compound for the two cell lines HepG2 and MCF-7 were 34.52 21 2.21 and 7.75 70 3.70 μM, respectively.


[1] H. Puchtler and S. Meloan, Histochemistry 72 (1981) 321.
[2] S. Meghdadi, M. Amirnasr, M. Majedi, M. Bagheri, A. Amiri, S. Abbasi and K. Mereiter, inorg. Chim. Acta  437 (2015) 64.
[3] S.M. Bensaber, H. Allafe, N.B. Ermeli, S.B. Mohamed, A.A. Zetrini, S.G. Alsabri, M. Erhuma, A. Hermann, M.I. Jaeda and A.M. Gbaj, Med. Chem. Res. 23 (2014) 5120.
[4] N. El-wakiel, M. El-Keiy and M. Gaber, Spectrochimica Acta Part A: Spectrochim. Acta A 147 (2015) 117.
[5] M. Salehi, M. Kubicki,  M. Jafari, M. Galini and F. Soleminani, J. Appl. J. Chem. 54 (2020) 315-330.
[6] Z. Abbasi, M. Salehi and A. Khaleghian, Appl. J. Appl. J. Chem. 49 (2019) 103-116.
[7] A. Jarrahpour, D. Khalili, E. De Clercq, C. Salmi and J.M. Brunel, Molecules 12 (2007) 1720.
[8] W. Rehman, M.K. Baloch, B. Muhammad, A. Badshah and K.M. Khan, Sci. Bull 49 (2004) 119.
[9] A.A. Shanty, J.E. Philip, E.J. Sneha, M.R.P. Kurup, S. Balachandran and P.V. Mohanan, Bioorg. Chem. 70 (2017) 67.
[10] H. Karimi-Maleh, A. Fallah Shojaei, F. Karimi, K. Tabatabaeian and s. shakeri, J. Nanostructures 8 (2018) 217.
[11] D. Agudelo, P. Bourassa, G. Berube and H.A. Tajmir-Riahi, J. Photochem. Photobiol. B: Biol. 158 (2016) 274.
[12] A. D. Richards and A. Rodger, Chem. Soc. Rev. 36 (2007) 471.
[13] K. Jana, T. Maity, T.S. Mahapatra, P.K.D. Mohapatra, S.C. Debnath, S. Das, M. Hossain and B.C. Samanta, Transition Met. Chem. 42 (2017) 69.
[14] Z. Shokohi-Pour, H. Chiniforoshan, M.R. Sabzalian, S.A. Esmaeili and V. Momtazi-borojeni, J. Biomol. Struct. Dyn. 36 (2017) 1.
[15] M. Eslami Moghadam, A. Divsalar, A. Abolhosseini Shahrnoy and A. A. Saboury, J. Biomol. Struct. Dyn. 34 (2016) 1751.
[16] N. Zaidi, S. Nusrat, F. K. Zaidi and R. H. Khan, J. Phys. Chem. B 118 (2014) 13025.
[17] M. Salehi, M. Kubicki, M. Galini, M. Jafari and R. E. Malekshah, J. Mol. Struct. 1180 (2019) 595.
[18] M. Galini, M. Salehi, M. Kubicki, A. Amiri and A. Khaleghian, Inorganica Chim. Acta 461 (2017) 167.
[19] T. Tomasic, M. Mirt, M. Barancokova, J. Ilas, N. Zidar, P. Tammela and D. Kikelj, Bioorg. Med. Chem. 25 (2017) 338.
[20] S. Mandal, S. Mandal, D. K. Seth, B. Mukhopadhyay and P. Gupta, Inorganica Chim. Acta 398 (2013) 83.
[21] H. Mahaki, H. Tanzadehpanah, O. K. Abou-Zied, N. H. Moghadam, A. Bahmani, S. Salehzadeh, D. Dastan and M. Saidijam, Process Biochem 79 (2019) 203.
[22] A. Divsalar, A. A. Saboury, H. Mansoori-Torshizi, M. M. Eslami, F. Ahmad and G. H. Hakimelahi, J. Biomol. Struct. Dyn. 26 (2009) 587.
[23] A. Holm and S. Ivalu, Phys. Chem. Chem. Phys. 12 (2010) 9581.