Study the effects of synthetic parameters of electrochemical oxidation with ammonium sulfate on electrochemical behavior of carbon cloth

Document Type : Original Article


Faculty of Chemistry, Amirkabir University of Technology, Tehran, Iran


In this paper, the synthetic parameters of electrochemical oxidation of carbon cloth including electrolyte temperature, electrolyte refreshing, cation content and concentration of oxidant, oxidation time and applied potential were studied. The electrochemical behaviors of oxidized carbon cloths were examined by cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) in sulfuric acid (H2SO4) as electrolyte using a potentiostat/galvanostat analyzer. The electrochemical oxidation was carried out using a potentiostat technique in the presence of ammonium sulfate ((NH4)2SO4) as an inorganic oxidant. Results indicated the optimum synthetic parameters for achieving a high capacitance oxidized carbon cloth. In second part, the electrochemical oxidation of carbon cloth using the optimized parameters was comprised with hydrothermal oxidation route by using concentrated nitric acid (HNO3) regarding the electrochemical activity of their resultant oxidized and activated carbon cloths. The results showed that the electrochemical oxidation is desirable route for activating the carbon cloth quickly for use in supercapacitor applications.


[1] J. Liu, Q. Wang and P. Liu, J. Colloid Interface Sci. 546 (2019) 60.
[2] W. Zhang, R. Guo, J. Sun, L. Dang, Z. Liu, Z. Lei and Q. Sun, J. Colloid Interface Sci. 553 (2019) 705.
[3] Z. Miao, Y. Huang, J. Xin, X. Su, Y. Sang, H. Liu and J.-J. Wang, ACS Appl. Mater. Interfaces. 11 (2019) 18044.
[4] D. Wu and W. Zhong, J. Mater. Chem. A. 7 (2019) 5819.
[5] J. Zhang, J. Sun, T. Ahmed Shifa, D. Wang, X. Wu and Y. Cui, Chem. Eng. J. 372 (2019) 1047.
[6] Q. Zhang, B. Sun, J. Sun, N. Wang and W. Hu, J. Electroanal. Chem. 839 (2019) 39.
[7] H. Jeon, J.M. Jeong, S.B. Hong, M. Yang, J. Park, D.H. Kim, S.Y. Hwang and B.G. Choi, Electrochim. Acta. 280 (2018) 9.
[8] W. Zhao, Y. Zheng, L. Cui, D. Jia, D. Wei, R. Zheng, C. Barrow, W. Yang and J. Liu, Chem. Eng. J. 371 (2019) 461.
[9] D. Ye, Y. Yu, J. Tang, L. Liu and Y. Wu, Nanoscale. 8 (2016) 10406.
[10] G. Wang, H. Wang, X. Lu, Y. Ling, M. Yu, T. Zhai, Y. Tong and Y. Li, Adv. Mater. 26 (2014) 2676.
[11] Z. Chen, L. Zheng, T. Zhu, Z. Ma, Y. Yang, C. Wei, L. Liu and X. Gong, Adv. Electron. Mater. 5 (2019) 1800721.
[12] T. Qin, S. Peng, J. Hao, H. Li, Y. Wen, Z. Wang, J. Huang, F. Ma, J. Hou and G. Cao, Electrochim. Acta. 292 (2018) 39.
[13] S.A. Razali, Rusi and S.R. Majid, Ionics. 25 (2019) 2575.
[14] T.A. Babkova, H. Fei, N.E. Kazantseva, I.Y. Sapurina and P. Saha, Electrochim. Acta. 272 (2018) 1.
[15] S.A. Razali and S.R. Majid, Materials & Design. 153 (2018) 24.
[16] Q. Wang, W. Ren, F. Gao, C. Qiu, Q. Wang, F. Gao and C. Zhao, ChemElectroChem. 6 (2019) 1768.
[17] N. Cheng, Q. Liu, J. Tian, Y. Xue, A.M. Asiri, H. Jiang, Y. He and X. Sun, Chem. Commun. 51 (2015) 1616.
[18] D. Xu, D. Chao, H. Wang, Y. Gong, R. Wang, B. He, X. Hu and H.J. Fan, Adv. Electron. Mater. 8 (2018) 1702769.
[19] Y. Yi, G. Weinberg, M. Prenzel, M. Greiner, S. Heumann, S. Becker and R. Schlögl, Catal. Today. 295 (2017) 32.
[20] M. Sevilla, G.A. Ferrero and A.B. Fuertes, Chemistry – A European Journal. 22 (2016) 17351.
[21] M.G. Hosseini and E. Ariankhah, J. Appl. Chem. 11 (2016) 147.
[22] M. Morita, R. Arizono, N. Yoshimoto and M. Egashira, J. Appl. Electrochem. 44 (2014) 447.
[23] M. Foroutan and L. Naji, Electrochim. Acta. 301 (2019) 421.
[24] W.-Y. Ko, Y.-C. Liu, J.-Y. Lai, C.-C. Chung and K.-J. Lin, ACS Sustainable Chem. Eng. 7 (2019) 669.
[25] H. Rasouli, L. Naji and M.G. Hosseini, RSC Adv. 7 (2017) 3190.
[26] M. Fouladvand, L. Naji and M. Javanbakht, J. Appl. Chem. 15 (2020) 257, in Persian.