Evaluation Of The Modified Almond Shell And Carboxymethyl cellulose Performance With Graphene Oxide In Removal Of Heavy Metals Ni And Cd From Water

Document Type : Original Article

Authors

1 Department of Environment, Faculty of Basic Sciences, Islamic Azad University, Hamedan Branch, Hamedan, Iran

2 Department of Chemistry, Faculty of Basic Sciences, Islamic Azad University, Hamedan Branch, Hamedan, Iran

Abstract

Environmental Protection Agency of America has classified heavy metals such as Cd, Hg, As, Ni, Pb and Cr, as the toxic pollutants of environment. These elements imported into the environmental cycle by the chemical industries and other industries, such as water, agricultural products and human body, and ultimately its harmful effects on human. In this respect, separating and removal of heavy metals is an important task in controlling environmental pollutants. In the recent years the usage of nanoparticles as an adsorbent with high adsorption efficiency has attracted a lot of attention. Nano graphene oxide used in this study is classifying in the category of high capacity adsorbents due to its high specific surface area. In this study in addition to graphene oxide, Almond shell and Carboxymethyl cellulose were also used to improve the removal efficiency of heavy metals. The aim of this research is to synthesize Graphene oxide nanoparticles modified with Almond shell and Carboxymethyl cellulose and also to evaluate its performance in the removal of nickel and cadmium from water. The Nano Graphene oxide was synthesized by the Freeze- drying method and in order for characterization of the synthesized nanoparticles, FT-IR and SEM methods were used. Various parameters such as pH solution, contact time and adsorbent amount were investigated and the optimal values of each of factors were determined. The modeling of the absorption process was carried out using two models of Langmuir and Freundlich isotherms and the results show that the adsorption rate is consistent with the Langmuir isotherm model for nickle and Freundlich isotherm for the adsorption of cadmium. The results showed that the modified nanoparticles have better absorption capacity than unmodified ones, and its effectiveness to remove the element of Cd is more than Ni.

Keywords


[1] S. samadi. S. ghodratnia. H. montazeri hadesh. S. zakaria.  J. of  Applied Chemistry. 14 (1398) 87, In Persion.
[2] Y. Niu. X. Jiang. K. Wang. J. Xia. W. Jiao. Y. Niu and H. Yu. J. of  Science of the Total Environment700 (2020) 134509.
 [3] A.Sarı. M. Tuzen. J. of hazardous materials. 164 (2009) 1004.
[4] H. Kalavathy. B. Karthik. L. R. Miranda. J. of Colloids and surfaces B: Biointerfaces. 78 (2010) 291.
[5] M. Iram. C. Guo. Y. Guan. A. Ishfaq and H. Liu. J. of hazardous materials. 181 (2010) 1039.
[6] S. Khedr. M. Shouman. N. Fathy and A. Attia. ISRN Environmental Chemistry. (2014).
[7] Z. Zhang. M. Li. W. Chen. S. Zhu. N. Liu and L. Zhu. J. of Environmental Pollution158 (2010) 514.
[8] Y. Wei. Y. Zhao. X. Zhao. X. Gao. Y. Zheng. H. Zuo and Z. Wei. J. of  Bioresource Technology. 296 (2020) 122375.
[9] S. H. Huang. D. H.  Chen. J. of Hazardous Materials. 163 (2009) 174.
[10] L. Divband. M. Behzad. S. Boroomand nasab and S. Divband.  J. of Health and Environment. 5 (1391) 51, In Persion.
[11] K. E. Engates. H. J. Shipley. J. of Environmental Science and Pollution Research. 18 (2011) 386.
[12] R. Ruoff. J. of  Nature Nanotechnology3 (2008) 10.
[13] A. K. Mishra. S. Ramaprabhu. J. of  Desalination282 (2011) 39.
[14] S. T. Yang. Y. Chang. H. Wang. G. Liu. S. Chen. Y. Wang and A. Cao. J. of colloid and interface science351 (2010) 122.
[15] A. K. Mishra. S. Ramaprabhu. J. of  Desalination282 (2011) 39.
[16] Y. Ren. N. Yan. Q. Wen. Z. Fan. T. Wei. M. Zhang and J. Ma. Chemical Engineering Journal175 (2011) 1.
[17] X. Deng. L. Lü. H. Li and F. Luo. J. of hazardous materials183 (2010) 923.
[18] K. Zhang. V. Dwivedi. C. Chi and J. Wu. J. of hazardous materials182 (2010) 162.
[19] C. C. Ye. Q. F. An. J. K. Wu. F. Y. Zhao. P. Y. Zheng and N. X. Wang. J. of  Chemical Engineering Journal. 359 (2019) 994.
[20] Y. Zhang. S. Ni. X. Wang. W. Zhang. L. Lagerquist. M. Qin. S. Willför. C. Xu  and P. Fatehi. J. of  Chemical Engineering Journal. 372 (2019) 82.
[21] M. Mohammadi. M. Asadolahzade. A. Hemmati and S. Mohammadzade. The 3th Conference on Energy and Environment Management. (1392) 25, In Persion.
[22] S.H. Zavar Mousavi. Z. Lotfi.  J. of Water & Wastewater. 26 (1394) 2, In Persion.
[23] M. Malakotiyan. A. Khazaie. M. Loloie. Toloebehdasht Journal. 44(1393) 1, In Persion.
[24] S. S. Banerjee. D. H. Chen. J. of hazardous materials147 (2007) 792.
[25] Q. Wang. H. Qian. Y. Yang. Z. hang. C. Naman and  X. Xu. J. of Contaminant Hydrology114 (2010) 35.
[26] W. S. Hummers Jr. R. E. Offeman. J. of the American Chemical Society. 80 (1958) 1339.
[27] Y. Wu. H. Luo. H. Wang. L. Zhang. P. Liu and L. Feng. J. of colloid and interface science436 (2014) 90.
[28] M. Bordbar. RSC Advances 7 (2017) 180.
[29] Y. Zhao. L. Zhan. J. Tian. S. Nie and Z. Ning. J. of Electrochimica Acta56 (2011) 1967.
[30] K. Zhou. Y. Zhu. X. Yang. J. Luo. C. Li and S. Luan. J. of Electrochimica Acta55 (2010) 3055.
[30] Y. Zhang. Y. Liu. X. Wang. Z. Sun. J. Ma. T. Wu and J. Gao. J. of  Carbohydrate polymers101 (2014) 392.
[32] H. Dezhampanah. M. Majidi Naeemi. J. of  Applied Chemistry. 14 (1398) 9, In Persion.
[33] J. Lu. Y. Li. X. Yan. B. Shi. D. Wang and H. Tang. J. of  Colloids and Surfaces A: Physicochemical and Engineering Aspects. 347 (2009) 90.
[34] L. T. Zhuravlev. J. of Colloids and Surfaces A: Physicochemical and Engineering Aspects. 173 (2000) 1.
[35] K. L. Chen. M. Elimelech. J. of  Environmental science & technology. 42 (2008) 7607.
[36] A. Z. M. Badruddoza. A. S. H. Tay. P. Y. Tan. K. Hidajat and M. S. Uddin. J. of Hazardous Materials185 (2011) 1177.
[37] L. Dong. Z. Zhu. H. Ma. Y. Qiu and J. Zhao. J. of Environmental Sciences. 22 (2010) 225.
[38] D. S. Shirsath. V. S. Shirivastava. J. of Applied Nanoscience. 5 (2015) 927.
[39] A. A. Babaie. Z. Baboli. M. Ahmadi moghadam. N. Jafarzade and G. R. Godarzi. J. of IIlam University of Medical Sciences. 21 (1392) 124, In Persion.
[40] F. Najafi. O. Moradi. M. Rajabi. M. Asif. I. Tyagi. S. Agarwal and V. K. Gupta. J. of Molecular Liquids208 (2015) 106.
[41] M. Bahrami. S. Brumand Nasab. H. A. Kashkooli. A. Farrokhian Firouzi and A. A. Babaei. J. of Health & Environment. 6 (1392) 221, In Persion.
[42] V. Kiarostami. J. Ahmadi. E. Saremi and M. Hosseinpour. J. of Applied Research in Chemistry. 7 (1392) 83,In Persion.
[43] A. V. Borhade. B. K. Uphade. J. of Desalination and Water Treatment. 57 (2016) 9776.
[44] X. Liu. R. Ma. X. Wang. Y. Ma. Y. Yang. L. Zhuang. S. Zhang. R. Jehan. J. Chen  and X. Wang. J. of  Environmental Pollution. 252 (2019) 62.
 [45] P. Yuan. M. Fan. D. Yang. H. He. D. Liu. A. Yuan and T. Chen. J. of Hazardous materials166 (2009) 821.
[46] S. R. Chowdhury. E. K. Yanful. J. of Environmental Management91 (2010) 2238.
[47] M. Keshvardoostchokami. L. Babaei. A. A. Zamani. A. H. Parizanganeh and F. Piri. Global J of Environmental Science and Management.  3 (2017) 267.
[48] E. Fosso-Kankeu. H. Mittal. F. Waanders. S. S. Ray. J. of Industrial and Engineering Chemistry48 (2017) 151.
[49] N. Kataria. V. K. Garg. J. of Chemosphere. 208 (2018) 818.
[50] R. Ahmad. I. Hasan. J. of Separation Science and Technology. 3 (2016) 381.
[51] M. Naushad. T. Ahamad. K. A. Al-Ghanim. H. Ala'a. G. E. Eldesoky. A. A. Khan. J. of composites Part B172 (2019) 179.
[52] L. Suo. X. Dong. X. Gao. J. Xu. Z. Huang. J. Ye. X. Lu. L. Zhao. J. of Microchemical149 (2019) 104039.
[53] L. T. Tran. H. V. Tran. T. D. Le. G. L. Bach and L. D. Tran. J of Advances in Polymer Technology.  2019 (2019).
[54] A. Amiri. M. Ghorbani. M. Jahangiri. J. of Experimental Nanoscience. 18 (2015) 1374.
[55] A. R M. Abdul-Raheim. M. El-Saeed Shimaa. K. Farag Reem. E. Abdel-Raouf Manar. J. of Advanced Materials Letters5 (2016) 402.
[56] N. Kaur. M. Kaur. D. Singh. J. of Experimental Nanoscience. 253 (2019) 111.