The effect of nickel salt source and anion of electrolyte on electro-driven water oxidation activity using nickel hydroxide thin film

Document Type : Original Article


Department of Chemistry, Faculty of Science, Mohaghegh Ardabili University, Ardabil, Iran


In this approach, we demonstrate a very simple, easy and fast electrodeposition method to form nickel hydroxide (Ni(OH)2) thin film which is able to catalyze the water electro-oxidation reaction. Cyclic voltammetry and bulk electrolysis with Ni(OH)2 film in aqueous solution (pH 10.0) exhibited good catalytic current. The nickel oxide film was characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and voltammetric methods. The results shows that Ni(OH)2 film is a robust heterogeneous water oxidation catalyst which has been used in long time without missing efficiency. The effect of several parameters in electro-synthesize of nickel hydroxide such as the kind of nickel salts, supporting electrolyte, pH and electrodeposition time of nickel hydroxide were investigated on water oxidation efficiency. The film exhibits an overpotentials of 60 mV and 540 mV at the onset of catalytic current in borate supporting electrolyte at around 1 mA cm-2 and 10 mA cm-2 in pH 10.0, respectively. The catalytic performance of the material is demonstrated by long-term electrolysis at 1.1 V versus saturated calomel electrode (SCE) with a stable current density ~ 4.5 mA for pH 10.0 (for at least 5 h), and a Faradaic efficiency of almost 97% is obtained.


[1] B.J. Trześniewski, O. Diaz-Morales, D.A. Vermaas, A. Longo, W. Bras, M.T. Koper, W.A. Smith, Journal of the American Chemical Society, 137 (2015) 15112.
[2] N. Atar, T. Eren, M.L. Yola, H. Karimi-Maleh, B. Demirdögen, RSC Advances, 5 (2015) 26402.
[3] M.E. Lyons, R.L. Doyle, M.P. Browne, I.J. Godwin, A.A. Rovetta, Current Opinion in Electrochemistry, 1 (2017) 40.
[4] P.D. Tran, M. Nguyen, S.S. Pramana, A. Bhattacharjee, S.Y. Chiam, J. Fize, M.J. Field, V. Artero, L.H. Wong, J. Loo, Energy & Environmental Science, 5 (2012) 8912.
[5] K. Fan, H. Chen, Y. Ji, H. Huang, P.M. Claesson, Q. Daniel, B. Philippe, H. Rensmo, F. Li, Y. Luo, Nature communications, 7 (2016) 1.
[6] J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri, X. Sun, Advanced materials, 28 (2016) 215.
[7] Y.R. Zheng, M.R. Gao, Q. Gao, H.H. Li, J. Xu, Z.Y. Wu, S.H. Yu, Small, 11 (2015) 182.
[8] T. Wada, K. Tsuge, K. Tanaka, Angewandte Chemie International Edition, 39 (2000) 1479.
[9] S. Lin, Y. Pineda‐Galvan, W.A. Maza, C.C. Epley, J. Zhu, M.C. Kessinger, Y. Pushkar, A.J. Morris, ChemSusChem, 10 (2017) 514.
[10] K.S. Joya, N.K. Subbaiyan, F. D'Souza, H.J. de Groot, Angewandte Chemie International Edition, 51 (2012) 9601.
[11] K. Xu, P. Chen, X. Li, Y. Tong, H. Ding, X. Wu, W. Chu, Z. Peng, C. Wu, Y. Xie, Journal of the American Chemical Society, 137 (2015) 4119.
[12] K. Fominykh, J.M. Feckl, J. Sicklinger, M. Döblinger, S. Böcklein, J. Ziegler, L. Peter, J. Rathousky, E.W. Scheidt, T. Bein, Advanced Functional Materials, 24 (2014) 3123.
[13] K. Fominykh, P. Chernev, I. Zaharieva, J. Sicklinger, G. Stefanic, M. Döblinger, A. Müller, A. Pokharel, S. Böcklein, C. Scheu, ACS nano, 9 (2015) 5180.
[14] S. Hadith, Sh. Nia. Shahram, J. Of Applied Chemistry, 29 (1398) 140, in Persian.
 [15] F. Li, H. Li, Y. Zhu, J. Du, Y. Wang, L. Sun, Chinese Journal of Catalysis, 38 (2017) 1812.
[16] A. Singh, S.L. Chang, R.K. Hocking, U. Bach, L. Spiccia, Energy & Environmental Science, 6 (2013) 579.
[17] M. Yoshida, S. Onishi, Y. Mitsutomi, F. Yamamoto, M. Nagasaka, H. Yuzawa, N. Kosugi, H. Kondoh, The Journal of Physical Chemistry C, 121 (2017) 255.
[18] F. Basharat, U. Rana, M. Shahid, M. Serwar, RSC Advances, 5 (2015) 86713.
[19] P. Babar, A. Lokhande, M. Gang, B. Pawar, S. Pawar, J.H. Kim, Journal of industrial and engineering chemistry, 60 (2018) 493.
[20] C. Jiang, B. Zhao, J. Cheng, J. Li, H. Zhang, Z. Tang, J. Yang, Electrochimica Acta, 173 (2015) 399.
[21] J. Wu, J. Subramaniam, Y. Liu, D. Geng, X. Meng, Journal of Alloys and Compounds, 731 (2018) 766.
[22] Y. Zhang, Y. Liu, Y. Guo, Y.X. Yeow, H. Duan, H. Li, H. Liu, Materials Chemistry and Physics, 151 (2015) 160.
[23] Z. Wu, Z. Wang, F. Geng, ACS applied materials & interfaces, 10 (2018) 8585.
[24] R.D. Smith, R.S. Sherbo, K.E. Dettelbach, C.P. Berlinguette, Chemistry of Materials, 28 (2016) 5635.
[25] D.K. Bediako, B. Lassalle-Kaiser, Y. Surendranath, J. Yano, V.K. Yachandra, D.G, Journal of the American Chemical Society, 134 (2012) 6801.
[26] A. Mahmood, F. Tezcan, G. Kardaş, International Journal of Hydrogen Energy, 42 (2017) 2368.
[27] M. Dincă, Y. Surendranath, D.G. Nocera, Proceedings of the National Academy of Sciences, 107 (2010) 10337.
[28] M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang, Y. Yan, Journal of the American Chemical Society, 136 (2014) 7077.
[29] Z. Yue, W. Zhu, Y. Li, Z. Wei, N. Hu, Y. Suo, J. Wang, Inorganic chemistry, 57 (2018) 4693.
[30] X. Han, Y. Yu, Y. Huang, D. Liu, B. Zhang, ACS Catalysis, 7 (2017) 6464.
[31] L. Tong, W. Wu, K. Kuepper, A. Scheurer, K. Meyer, ChemSusChem, 11 (2018) 2752.
[32] H.Q. Fu, L. Zhang, C.W. Wang, L.R. Zheng, P.F. Liu, H.G. Yang, ACS Energy Letters, 3 (2018) 2021.
[33] M. Gao, C. Sun, H. Lei, J. Zeng, Q. Zhang, Nanoscale, 10 (2018) 17546.
[34] P.W. Menezes, A. Indra, O. Levy, K. Kailasam, V. Gutkin, J. Pfrommer, M. Driess, Chemical Communications, 51 (2015) 5005.